Physikalisches Institut (PHI)

Submitted & recently published articles

  • Tracking Brownian motion in three dimensions and characterization of individual nanoparticles using a fiber-based high-finesse microcavity, L. Kohler, M. Mader, Ch. Kern, M. Wegener, D. Hunger, arXiv:2008.12173
  • Tunable quantum photonics platform based on fiber-cavity enhanced single photon emission from two-dimensional hBN, S. Häußler, G. Bayer, R. Waltrich, N. Mendelson, C. Li, D. Hunger, I. Aharonovich, A. Kubanek, arXiv:2006.13048
  • Cryogenic platform for coupling color centers in diamond membranes to a fiberbased microcavity, M. Salz, Y. Herrmann, A. Nadarajah, A. Stahl, M. Hettrich, A. Stacey, S. Prawer, D. Hunger, F. Schmidt-Kaler, arXiv:2002.08304
  • Dynamic control of Purcell enhanced emission of erbium ions in nanoparticles, Bernardo Casabone, Chetan Deshmukh, Shuping Liu, Diana Serrano, Alban Ferrier, Thomas Hümmer, Philippe Goldner, David Hunger, Hugues de Riedmatten, arXiv:2001.08532

Publications Group Hunger


2020
Cryogenic platform for coupling color centers in diamond membranes to a fiber-based microcavity.
Salz, M.; Herrmann, Y.; Nadarajah, A.; Stahl, A.; Hettrich, M.; Stacey, A.; Prawer, S.; Hunger, D.; Schmidt-Kaler, F.
2020. Applied physics / B, 126 (8), Art. Nr.: 131. doi:10.1007/s00340-020-07478-5VolltextVolltext der Publikation als PDF-Dokument
2019
Transverse-mode coupling effects in scanning cavity microscopy.
Benedikter, J.; Moosmayer, T.; Mader, M.; Hümmer, T.; Hunger, D.
2019. New journal of physics, 21 (10), Article: 103029. doi:10.1088/1367-2630/ab49b4VolltextVolltext der Publikation als PDF-Dokument
Polariton hyperspectral imaging of two-dimensional semiconductor crystals.
Gebhardt, C.; Förg, M.; Yamaguchi, H.; Bilgin, I.; Mohite, A. D.; Gies, C.; Florian, M.; Hartmann, M.; Hänsch, T. W.; Högele, A.; Hunger, D.
2019. Scientific reports, 9 (1), Article: 13756. doi:10.1038/s41598-019-50316-8VolltextVolltext der Publikation als PDF-Dokument
Diamond photonics platform based on silicon vacancy centers in a single-crystal diamond membrane and a fiber cavity.
Häußler, S.; Benedikter, J.; Bray, K.; Regan, B.; Dietrich, A.; Twamley, J.; Aharonovich, I.; Hunger, D.; Kubanek, A.
2019. Physical review / B, 99 (16), Article: 165310. doi:10.1103/PhysRevB.99.165310
Cavity-control of interlayer excitons in van der Waals heterostructures.
Förg, M.; Colombier, L.; Patel, R. K.; Lindlau, J.; Mohite, A. D.; Yamaguchi, H.; Glazov, M. M.; Hunger, D.; Högele, A.
2019. Nature Communications, 10 (1), Article: 3697. doi:10.1038/s41467-019-11620-zVolltextVolltext der Publikation als PDF-Dokument
2018
Driven-dissipative non-equilibrium Bose–Einstein condensation of less than ten photons.
Walker, B. T.; Flatten, L. C.; Hesten, H. J.; Mintert, F.; Hunger, D.; Trichet, A. A. P.; Smith, J. M.; Nyman, R. A.
2018. Nature physics, 14 (12), 1173–1177. doi:10.1038/s41567-018-0270-1
Cavity-enhanced spectroscopy of a few-ion ensemble in Eu3+:Y2O3.
Casabone, B.; Benedikter, J.; Hümmer, T.; Oehl, F.; Lima, K. de O.; Hänsch, T. W.; Ferrier, A.; Goldner, P.; Riedmatten, H. de; Hunger, D.
2018. New journal of physics, 20 (9), 095006. doi:10.1088/1367-2630/aadf68VolltextVolltext der Publikation als PDF-Dokument
Robust, tunable, and high purity triggered single photon source at room temperature using a nitrogen-vacancy defect in diamond in an open microcavity.
Dolan, P. R.; Adekanye, S.; Trichet, A. A. P.; Johnson, S.; Flatten, L. C.; Chen, Y. C.; Weng, L.; Hunger, D.; Chang, H.-C.; Castelletto, S.; Smith., J. M.
2018. Optics express, 26 (6), 7056–7065. doi:10.1364/OE.26.007056VolltextVolltext der Publikation als PDF-Dokument
2017
Cavity-Enhanced Single-Photon Source Based on the Silicon-Vacancy Center in Diamond.
Benedikter, J.; Kaupp, H.; Hümmer, T.; Liang, Y.; Bommer, A.; Becher, C.; Krueger, A.; Smith, J. M.; Hänsch, T. W.; Hunger, D.
2017. Physical review applied, 7 (2), Art. Nr.: 024031. doi:10.1103/PhysRevApplied.7.024031
2016
Open optical microcavities for CQED experiments and devices.
Smith, J.; Trichet, A.; Dolan, P.; Coles, D.; Flatten, L.; Johnson, S.; Patel, R.; Schwarz, S.; Li, F.; Krizhanovskii, D.; Tartakovskii, A.; Skolnick, M.; Vallance, C.; Hunger, D.
2016. Bulletin of the American Physical Society, 61 (2), A51.00009 
Purcell-Enhanced Single-Photon Emission from Nitrogen-Vacancy Centers Coupled to a Tunable Microcavity.
Kaupp, H.; Hümmer, T.; Mader, M.; Schlederer, B.; Benedikter, J.; Haeusser, P.; Chang, H.-C.; Fedder, H.; Hänsch, T. W.; Hunger, D.
2016. Physical review applied, 6, 054010. doi:10.1103/PhysRevApplied.6.054010VolltextVolltext der Publikation als PDF-Dokument
Cavity-enhanced Raman microscopy of individual carbon nanotubes.
Hümmer, T.; Noe, J.; Hofmann, M. S.; Hänsch, T. W.; Högele, A.; Hunger, D.
2016. Nature Communications, 7, 12155. doi:10.1038/ncomms12155VolltextVolltext der Publikation als PDF-Dokument
Photothermal effects in ultra-precisely stabilized tunable microcavities.
Brachmann, J. F. S.; Kaupp, H.; Hänsch, T. W.; Hunger, D.
2016. Optics express, 24 (18), 21205–21215. doi:10.1364/OE.24.021205
2015
A scanning cavity microscope.
Mader, M.; Reichel, J.; Hänsch, T. W.; Hunger, D.
2015. Nature Communications, 6, 7249. doi:10.1038/ncomms8249
Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters.
Grange, T.; Hornecker, G.; Hunger, D.; Poizat, J.-P.; Gerard, J.-M.; Senellart, P.; Auffeves, A.
2015. Physical review letters, 114 (19), 193601. doi:10.1103/PhysRevLett.114.193601
Transverse-mode coupling and diffraction loss in tunable Fabry-Pé rot microcavities.
Benedikter, J.; Hümmer, T.; Mader, M.; Schlederer, B.; Reichel, J.; Hänsch, T. W.; Hunger, D.
2015. New journal of physics, 17, Art. Nr.: 053051. doi:10.1088/1367-2630/17/5/053051VolltextVolltext der Publikation als PDF-Dokument
2014
All-optical sensing of a single-molecule electron spin.
Sushkov, A. O.; Chisholm, N.; Lovchinsky, I.; Kubo, M.; Lo, P. K.; Bennett, S. D.; Hunger, D.; Akimov, A.; Walsworth, R. L.; Park, H.; Lukin, M. D.
2014. Nano letters, 14 (11), 6443–6448. doi:10.1021/nl502988n
2013
Towards single electron spin detection at room temperature using nitrogen-vacancy centers.
Chisholm, N.; Lovchinsky, I.; Sushkov, A.; Kubo, M.; Lo, P.; Bersin, E.; Hunger, D.; Akimov, A.; Bennett, S.; Yao, N.; Park, H.; Lukin, M.
2013. Bulletin of the American Physical Society, 58 (6), D1.00022 
Cavity-enhanced optical detection of carbon nanotube Brownian motion.
Stapfner, S.; Ost, L.; Hunger, D.; Reichel, J.; Favero, I.; Weig, E.
2013. Applied physics letters, 102, 151910. doi:10.1063/1.4802746
Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond.
Kaupp, H.; Deutsch, C.; Chang, H.-C.; Reichel, J.; Hänsch, T. W.; Hunger, D.
2013. Physical review / A, 88 (5), 053812. doi:10.1103/PhysRevA.88.053812
Hybrid atom-membrane optomechanics.
Korppi, M.; Jöckel, A.; Rakher, M. T.; Camerer, S.; Hunger, D.; Hänsch, T. W.; Treutlein, P.
2013. EPJ Web of Conferences, 57, 03006. doi:10.1051/epjconf/20135703006
2012
Progress Towards Room-Temperature Electron Spin Detection in Biological Systems.
Chisholm, N.; Lovchinsky, I.; Sushkov, A.; Hunger, D.; Akimov, A.; Lo, P.; Sutton, A.; Robinson, J.; Yao, N.; Bennett, S.; Park, H.; Lukin, M.
2012. Bulletin of the American Physical Society, 57 (5), K1.00153 
Room temperature solid-state quantum bit with second-long memory.
Kucsko, G.; Maurer, P.; Latta, C.; Hunger, D.; Jiang, L.; Pastawski, F.; Yao, N.; Bennet, S.; Twitchen, D.; Cirac, I.; Lukin, M.
2012. Bulletin of the American Physical Society, 57 (1), D29.00007 
Towards Probing Living Cell Function with NV Centers in Nanodiamonds.
Sushkov, A.; Lovchinsky, I.; Chisholm, N.; Hunger, D.; Akimov, A.; Lo, P.; Sutton, A.; Robinson, J.; Yao, N.; Bennett, S.; Park, H.; Lukin, M.
2012. Bulletin of the American Physical Society, 57 (1), A30.00010 
Multi-second quantum memory based upon a single nuclear spin in a room temperature solid.
Maurer, P.; Kucsko, G.; Latta, C.; Jiang, L.; Yao, N.; Bennett, S.; Pastawski, F.; Hunger, D.; Chisholm, N.; Markham, M.; Twitschen, D.; Cirac, I.; Lukin, M.
2012. Bulletin of the American Physical Society, 57 (5), K1.00081 
Room-Temperature Quantum Bit Memory Exceeding One Second.
Maurer, P. C.; Kucsko, G.; Latta, C.; Jiang, L.; Yao, N. Y.; Bennett, S. D.; Pastawski, F.; Hunger, D.; Chisholm, N.; Markham, M.; Twitchen, D. J.; Cirac, J. I.; Lukin, M. D.
2012. Science, 336 (6086), 1283–1286. doi:10.1126/science.1220513
Langlebiger Quantenspeicher in Diamant.
Hunger, D.; Pastawski, F.; Meier, C.
2012. Physik in unserer Zeit, 43 (5), 217–218. doi:10.1002/piuz.201290078
Laser micro-fabrication of concave, low-roughness features in silica.
Hunger, D.; Deutsch, C.; Barbour, R. J.; Warburton, R. J.; Reichel, J.
2012. AIP Advances, 2, 012119. doi:10.1063/1.3679721
2011
Coupling ultracold atoms to mechanical oscillators.
Hunger, D.; Camerer, S.; Korppi, M.; Jöckel, A.; Hänsch, T. W.; Treutlein, P.
2011. Comptes rendus physique, 12 (9-10), 871–887. doi:10.1016/j.crhy.2011.04.015
Spectroscopy of mechanical dissipation in micro-mechanical membranes.
Jöckel, A.; Rakher, M. T.; Korppi, M.; Camerer, and S.; Hunger, D.; Mader, M.; Treutlein, P.
2011. Applied physics letters, 99 (14), 143109. doi:10.1063/1.3646914
Realization of an optomechanical interface between ultracold atoms and a membrane.
Camerer, S.; Korppi, M.; Jöckel, A.; Hunger, D.; Hänsch, T. W.; Treutlein, P.
2011. Physical review letters, 107 (22), 223001. doi:10.1103/PhysRevLett.107.223001
2010
A Bose-Einstein condensate coupled to a micromechanical oscillator.
Hunger, D.
2010. Südwestdeutscher Verlag für Hochschulschriften, Saarbrücken 
Fiber Fabry-Perot cavity with high finesse.
Hunger, D.; Steinmetz, T.; Colombe, Y.; Deutsch, C.; Hänsch, T. W.; Reichel, J.
2010. New journal of physics, 12, 065038. doi:10.1088/1367-2630/12/6/065038
Resonant Coupling of a Bose-Einstein Condensate to a Micromechanical Oscillator.
Hunger, D.; Camerer, S.; Hänsch, T. W.; König, D.; Kotthaus, J. P.; Reichel, J.; Treutlein, P.
2010. Physical review letters, 104 (14), Art.Nr. 143002. doi:10.1103/PhysRevLett.104.143002
Optical Lattices with Micromechanical Mirrors.
Hammerer, K.; Stannigel, K.; Genes, C.; Wallquist, M.; Zoller, P.; Treutlein, P.; Camerer, S.; Hunger, D.; Hänsch, T. W.
2010. Physical review / A, 82, 021803(R). doi:10.1103/PhysRevA.82.021803
2009
Fluctuating nanomechanical system in a high finesse optical microcavity.
Favero, I.; Stapfner, S.; Hunger, D.; Paulitschke, P.; Reichel, J.; Lorenz, H.; Weig, E. M.; Karrai, K.
2009. Optics express, 17 (15), 12813–12820. doi:10.1364/OE.17.012813VolltextVolltext der Publikation als PDF-Dokument
2007
Bose-Einstein Condensate Coupled to a Nanomechanical Resonator on an Atom Chip.
Treutlein, P.; Hunger, D.; Camerer, S.; Hänsch, T. ~.; Reichel, J.
2007. Physical review letters, 99, 140403. doi:10.1103/PhysRevLett.99.140403
Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
Colombe, Y.; Steinmetz, T.; Dubois, G.; Linke, F.; Hunger, D.; Reichel, J.
2007. Nature, 450, 272–276. doi:10.1038/nature06331
2006
Stable fiber-based Fabry-Pérot cavity.
Steinmetz, T.; Colombe, Y.; Hunger, D.; Hänsch, T. W.; Balocchi, A.; Warburton, R. J.; Reichel, J.
2006. Applied physics letters, 89 (11), 111110. doi:10.1063/1.2347892