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Introduction

First of all: This thesis has nothing to do with people riding on cannonballs. Instead, dc-
SQUIDs with large inductance and an additional capacitive asymmetry are investigated.
Superconducting QUantum Interference Devices (SQUIDs) attained a great deal of interest

ever since it became clear that they can be used to resolve changes in magnetic fields as small
as 10−14 T [Sch97]. A SQUID consists of a superconducting loop that is intersected by either
one Josephson junction (rf-SQUID) or two Josephson junctions in parallel (dc-SQUID). One
of the many applications where their large sensitivity is very much appreciated is their use
as readout devices in the developing field of superconducting quantum bits. When using the
SQUID as measurement device, the main figure of merit is its sensitivity and reliability.
However, in this work the SQUID itself is studied in a rather interesting variation. V. Geshken-

bein, A. Thomann and G. Blatter theoretically predicted the escape of a classical degree of
freedom out of a metastable minimum at zero temperature provided that it is coupled to a
quantum mechanical degree of freedom [TGB09]. Since such a behavior reminds very much of
Baron Münchhausen, who claimed to have himself (and his horse) rescued out of a swamp by
pulling at his own hair, this escape mechanism was named “Münchhausen” effect.
Experimentally, such a system can be realized by a dc-SQUID that has two small junctions,

one of them being shunted with a large capacitor. The equation of motion for a single Josephson
junction within the RCSJ model is analogous to the equation of motion of a pendulum under
external force: The bias current through the junction corresponds to a constant external torque
and its intrinsic capacitance can be considered as the mass equivalent. Thus, a large shunting
capacitor forces the shunted junction to behave classically. Additionally, if the capacitance of
the unshunted junction is small enough, this junction exhibits quantum mechanical behavior
such as the ability to tunnel through a potential barrier.
The aim of this work is to test the predictions made in Ref. [TGB09] and examine further

properties of such a dynamically asymmetric system. The dc-SQUIDs under investigation have
large inductances which is one of the conditions to observe the Münchhausen effect. This also
creates a system with two almost independent variables and allows for the study of effects like
phase diffusion in two dimensions.

Outline

In the first chapter, the basic properties of the Josephson tunnel junction and the dc-SQUID are
in the center of attention. Additionally, thermal and quantum mechanical escape mechanisms
for an escape out of metastable minima in one and two dimensions are reviewed and the
phenomenon of phase diffusion in underdamped junctions is explained. Chapter 2 discusses
the main features of the Münchhausen effect for the simple case of strong damping. The next
chapter deals with the technical details of the numerical simulation that was implemented to
include the effect of nonzero temperature on the system. In Chapter 4, the design of the SQUIDs
and the experimental realization of the measurement procedure is considered. The measured
results together with numerical simulations are presented and evaluated in Chapter 5. Due to
different parameter regimes each of the different SQUIDs is considered separately. Finally, the
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Introduction

last part of this work contains a summary of the main results and presents the conclusions that
can be drawn. It also contains an outlook on what would be interesting to investigate further.
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Chapter 1

The Basics of Josephson Tunnel Junctions
and dc-SQUIDs

This chapter gives a short overview over superconductivity and Josephson junctions. The basic
properties of Josephson tunnel junctions and their use in superconducting quantum interference
devices (SQUIDs), focussing on dc-SQUIDs, will be discussed.

1.1 Superconductivity

When Heike Kamerlingh Onnes first observed in 1911 [KO11] that the resistance of some met-
als disappeared below a certain material specific temperature, he probably never would have
guessed that there was another side to the coin superconductivity, namely perfect diamag-
netism. This discovery was made by Walther Meissner and Robert Ochsenfeld in 1933 [MO33].
Additionally, it took until 1957 to find the explanation on the microscopic scale which was
done by John Bardeen, Leon N. Cooper, and John R. Schrieffer [BCS57].
In their theory they claim that two electrons couple to each other, forming a so-called Cooper

pair. The coupling between the two electrons is due to a weak electron-phonon interaction
which results in an effective attraction between the two electrons.
If the Cooper pair is considered as one particle, it has spin 0. Thus it behaves according to
Bose-Einstein statistics and at T = 0 all Cooper pairs occupy the ground state.
Another consequence of the coupling is the resulting energy gap ∆ between the ground state,

occupied by Cooper pairs, and the excited states of the quasiparticles which, simplified, can
be considered as single electrons. This is also the reason for the perfect conductivity of the
superconductor. Scattering is forbidden because there are no states to scatter into.
In order to describe the macroscopic phenomena arising from superconductivity, instead of

using the microscopic BCS theory, it is much more convenient to use the macroscopic Ginzburg-
Landau theory developed by Vitali L. Ginzburg and Lew D. Landau, that can be deduced as
limiting case of the microscopic theory [Tin04].
The wave function describing the macroscopic superconducting state is then given as

Ψ(~r, t) = |Ψ(~r, t)| exp[iθ(~r, t)] (1.1)

where |Ψ(~r, t)|2 = ns corresponds to the local density of superconducting electron pairs.

Flux Quantization When a loop is formed out of a superconducting material, the wave
function must be single-valued after one turn around the loop. This leads to flux quantization
[Sch97]. The flux threading a superconducting loop can only assume integer numbers of the
flux quantum Φ0 = h/(2e) = 2.07 · 10−15 Vs.

3



Chapter 1 The Basics of Josephson Tunnel Junctions and dc-SQUIDs

1.2 The Josephson Junction

1.2.1 The Josephson Relations

A Josephson tunnel junction is formed by two superconductors that are separated by a thin
isolating layer (cf. Fig. 1.1). The superconducting wave function decays exponentially in this
layer but if it is thin enough the wave function is still appreciable at the other side of the barrier.
Thus, Cooper pairs can cross the barrier. This creates a supercurrent that only depends on the
difference ϕ = θ1−θ2 between the phases of the two wave functions provided that the absolute
values of the wave functions are equal on both sides of the insulator [Sch97].

Fig. 1.1: Schematic of a Josephson tunnel junction (top) and the exponential decay of the supercon-
ducting wave function inside the insulator (bottom).

Brian D. Josephson [Jos62] developed two equations connecting the phase difference across
the junction with the current I through, and voltage V across it.

I = Ic sinϕ (1.2)
dϕ
dt

=
2eV

~
(1.3)

As long as the current through the junction is smaller than the critical value Ic, the junction
is in the zero voltage state. The current through the junction then flows without dissipation
and is sufficiently described by Eq. (1.2). If, however, the bias current exceeds the critical value,
it cannot be sustained only by Cooper pairs, and quasiparticle (i.e. single electron) tunneling
creates an additional contribution to the current. The junction then enters the normal resistive
state. A voltage drop occurs and the phase difference is not constant anymore (cf. Eq. (1.3)).

1.2.2 The Resistively and Capacitively Shunted Junction Model

The resistively and capacitively shunted junction (RCSJ) model describes the time dependence
of the phase difference ϕ across the junction. A resistor in parallel to the ideal junction models
the quasiparticle resistance and a capacitor in parallel reflects the intrinsic capacitance between
the two superconductors. The equivalent circuit is presented in Fig. 1.2.
With Kirchhoff’s current law the current distribution across the three branches is given as

I = Ic sinϕ+
V

R
+ C

dV
dt

(1.4)

= Ic sinϕ+
1
R

~
2e
ϕ̇+ C

~
2e
ϕ̈ (1.5)

The last expression is obtained using Eq. (1.3). Here, and throughout this work, ϕ̇ = dϕ/dt.
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1.2 The Josephson Junction

Fig. 1.2: Equivalent circuit of the Josephson junction in the RCSJ model

In order to gain a better understanding of this equation it can be rewritten as

EJ

(
1
ω2

p

ϕ̈+
1
ωc
ϕ̇

)
+
∂U

∂ϕ
= 0 (1.6)

where
U(ϕ) = EJ(1− cosϕ− jϕ) (1.7)

is the tilted washboard potential shown in Fig. 1.3 for different values of the normalized bias
current j = I/Ic. Eq. (1.6) can then be understood as describing the motion of an artificial
particle of mass m = ~C/(2e) in this potential.
In Eq. (1.6) the Josephson energy EJ = Φ0Ic/(2π) and two vital frequencies are introduced.

ωp =

√
2eIc
~C

(1.8)

ωc =
2eIcR

~
(1.9)

The plasma frequency ωp defines the frequency of small oscillations of the phase particle
at the bottom of the potential well for zero bias current. The characteristic frequency ωc

describes the strength of the damping, which is determined by the normal resistance R of the
junction. In dimensionless units the damping can be quantified by the reciprocal quality factor
Q = ωc/ωp = ωpRC [Tin04].

Fig. 1.3: Tilted washboard potential in units of EJ for different normalized bias currents j.

The tilt of the potential due to nonzero bias current changes the plasma frequency and the
height of the barrier U0 that separates one minimum from the other. The dependence of the
plasma frequency on the bias current is given by

ωA(j) = ωp(1− j2)1/4. (1.10)

5



Chapter 1 The Basics of Josephson Tunnel Junctions and dc-SQUIDs

The exact expression for U0(j) can be found for example in Ref. [MDC87], but since it is
rather awkward to handle, we will mostly use an approximation which is valid for |1−j|/j � 1.

U0(j, Ic) ≈ 2EJ(1− j)3/2 (1.11)

At zero bias current the phase particle is localized in the minimum at ϕ = 0 performing
small oscillations with the plasma frequency ωp. When the current is increased, the potential
starts to tilt, thereby decreasing the barrier that separates one minimum from the other. Once
the bias current reaches the critical current Ic the minimum is turned into an inflection point
and the particle is free to move down the potential. Now, the average velocity switches from
ϕ̇ = 0 to ϕ̇ > 0, thus creating a finite voltage.
For strong damping, i.e. a small quality factor Q � 1, the kinetic part of Eq. (1.6) can be

neglected, i.e. no kinetic energy can be stored in the system. The transition from V = 0 to
Ohm’s law V = IR is continuous and the current-voltage characteristic is not hysteretic upon
decrease of the bias current.
If, however, the junction is underdamped (Q > 1), the transition at the critical current

when increasing I is discontinuous and the voltage jumps from V = 0 to a value near the gap
voltage Vgap = 2∆/e.1 A further increase in current smoothly interpolates between V = Vgap

and Ohm’s law. Once the current is reduced, the voltage does not switch back to zero at
I = Ic, but continues to stay close to V = Vgap. This happens because the kinetic energy of the
phase particle is large enough to overcome the rising barriers. It only stops when the energy
dissipated is greater than the energy gained by the tilt of the potential. Then it is retrapped in
one minimum at the retrapping current Ir ≈ 4Ic/(πQ), where Q = ωpRC is the quality factor
that characterizes the damping. This creates a hysteretic I(V )-curve as depicted in Fig. 1.4.

−4 −2 0 2 4
−20

−10

0
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20

voltage V [mV]
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I
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A
]

R

Vgap
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Fig. 1.4: Hysteretic I(V )-curve of an underdamped Josephson junction.2

From the I(V )-curve the junction parameters such as normal resistance R, the subgap resis-
tance Rsg and the gap voltage Vgap can be extracted. Using the Ambegaokar-Baratoff formula

1it should be noted that the RCSJ model only shows a jump to V = RI
2As a matter of fact, the I(V )-curve displayed was measured for a underdamped dc-SQUID.
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1.2 The Josephson Junction

[Tin04] for zero temperature the critical current Ic of the junction can then be calculated.

IcR =
π

4
Vgap (1.12)

Throughout the rest of this work underdamped junctions will be the center of interest.

1.2.3 Escape Mechanisms

Thermal Activation

The above described situation, where the particle cannot escape before the barrier has com-
pletely vanished at I = Ic, applies only for a classical particle at zero temperature. For nonzero
temperature there is a finite probability that the particle overcomes the barrier via thermal
activation (TA) before the barrier has completely vanished at a switching current Isw < Ic.
This process is illustrated in Fig. 1.5.
The escape rate of a particle that escapes out of a metastable minimum because of being

affected by thermal fluctuations was already determined in 1940 by Kramers [Kra40] for several
regimes of damping. In the limit of small damping his result can be approximated [BHL83] to
be

ΓTA =
ωA

2π
exp

[
− U0

kBT

]
(1.13)

where ωA is the current dependent plasma frequency as given in Eq. (1.10). It is also called
attempt frequency. The escape rate depends on the ratio between the barrier height U0 and
the thermal energy kBT , where kB = 1, 38 · 10−23 J/K is the Boltzmann constant.

Macroscopic Quantum Tunneling

So far, we considered the phase difference across the Josephson junction to be a classical
variable, but for a sufficiently small ratio kBT/(~ωp) and weak damping quantum effects become
observable.
One of those effects is the escape of the phase particle by tunneling through the barrier of

the washboard potential. Since this tunneling process involves not just one single Cooper pair
but the phase difference between the two macroscopic wave functions, which therefore also is
a macroscopic variable, this effect is called macroscopic quantum tunneling (MQT). It is also
depicted in Fig. 1.5.

Fig. 1.5: Escape mechanisms out of a local minimum of the washboard potential via thermal activation
(dashed) and macroscopic quantum tunneling (dotted).
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Chapter 1 The Basics of Josephson Tunnel Junctions and dc-SQUIDs

As long as U0 � ~ωp/2, the Wenzel-Kramer-Brillouin approximation can be applied to
calculate the rate for macroscopic quantum tunneling in the case of negligible damping [Lic91].

ΓMQT =
ωA

2π

√
864πU0

~ωA
exp

[
− 36U0

5~ωA

]
(1.14)

Crossover Regime

At high temperatures escape due to thermal activation dominates. As the temperature de-
creases so does ΓTA while ΓMQT remains constant. Thus, below some crossover temperature
Tcr macroscopic quantum tunneling becomes the dominating escape mechanism. By comparing
the exponents of Eq. (1.14) and Eq. (1.13), the crossover temperature can be approximated to
be [Tin04]

kBTcr ≈
~ωA

2π
. (1.15)

Phase Diffusion in Underdamped Junctions

Phase diffusion occurs when temperature is comparable to the barrier height kBT ≈ ∆U of
the washboard potential. Additionally, the energy gain due to the tilt of the potential has to
be smaller than the energy dissipated between two adjacent maxima. In this case, the phase
particle can escape via TA but it will be retrapped in next minimum. From there, it can escape
again, is then retrapped and so on.
These subsequent escape and retrapping events cause the particle to move with a slow, stop-

and-go like motion down the potential. This creates a small average velocity for the phase
particle, resulting in a small average voltage. It can be observed as a small deviation from the
superconducting branch in the I(V )-curve.

Phase diffusion in overdamped (nonhysteretic) junctions was understood ([AH69] and [SP70])
long before the explanation for phase diffusion in underdamped (hysteretic) junctions was found
[KM90]. As mentioned above, the phase particle is retrapped in the next minimum when the
energy gain between two adjacent maxima of the washboard potential is less than the energy
dissipated. Within the noise-free RCSJ model for underdamped junctions the equilibrium
between energy gained and dissipated is defined by the retrapping current Ir ≈ 4Ic/(πQ).
Thus, phase diffusion in the underdamped regime should not be possible for bias currents
above the retrapping current, given that Q = const.
Nonetheless, phase diffusion is observed at currents I > Ir. This is possible because the

assumption, that the quality factor Q is constant, is not correct in general. In the phase
diffusion regime, the phase particle spends most of the time trapped in one of the minima
where its motion is defined by oscillations with the plasma frequency ωA(j) ≈ ωp (at small
currents). In this frequency range (10−100GHz) the dissipation of the system is not determined
anymore by the constant ohmic resistance R ∼ 1000 Ω of the junction and the resulting quality
factor Q = ωpRC. Instead, the junction sees the impedance of the bias circuit Z1 which is
typically of the order of Z1 ∼ 100 Ω [Tin04].
Thus, the dissipation 1/Q(ω) for high frequencies is much stronger than for low frequen-

cies. Therefore, the retrapping current Ir ∝ 1/Q(ωp) for the phase diffusion regime can be
considerably higher than the retrapping current out of the running state where ω ≈ 0 (cf. Ref.
[MK89]).
A nice diagram separating the different regimes of thermal activation, macroscopic tunneling,

overdamped and underdamped phase diffusion can be found in Ref. [KNC+05].
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1.3 The dc-SQUID

1.3 The dc-SQUID

A superconducting quantum interference device (SQUID) is realized when one or two junctions
are placed in a superconducting loop. For historic reasons they are called rf- or dc-SQUID,
respectively. This work is only concerned with two junction SQUIDs and the rf-SQUID will
not be considered here.

(a) two junction SQUID - sketch (b) two junction SQUID - schematic

Fig. 1.6: Asymmetric dc-SQUID consisting of a superconducting loop with inductance L = L1 + L2

threaded by a magnetic flux Φ. The loop is intersected by two junctions with critical current
Ic1 and Ic2, intrinsic capacitances C1 and C2 and normal resistances R1 and R2.

A sketch and a schematic of a dc-SQUID can be found in Fig. 1.6. The full SQUID is
characterized by a total critical current of 2Ic, a normal resistance RS and a total loop induc-
tance L. However, those quantities do not have to be distributed equally over the two SQUID
arms, as illustrated in Fig. 1.6(b). The asymmetries in inductance and critical current can be
characterized by the parameters η and α, respectively. They are defined as

L1 = (1− η)
L

2
and L2 = (1 + η)

L

2
, (1.16)

Ic1 = (1− α)Ic and Ic1 = (1 + α)Ic. (1.17)

The intrinsic capacitances of the single junctions are proportional to the area of the junctions,
as are the critical currents. Therefore, the asymmetry in capacitance can also be described by
the parameter α. For the different normal resistances the following equations hold:

R1 =
R

(1− ρ)
and R2 =

R

(1 + ρ)
(1.18)

where R = 2RS . For simplicity, only the symmetric case Ic1 = Ic2 = Ic, L1 = L2 = L/2 and
R1 = R2 = R will be considered throughout the rest of this chapter.
While both junctions are in the superconducting state the total current I through the SQUID

is composed of the current flowing through each junction

I = Ic(sinϕ1 + sinϕ2) (1.19)

where ϕ1 and ϕ2 are the phase differences across junction 1 and junction 2, respectively.

In order to obtain the differential equations that describe the dynamic behavior of the two
junctions, the RCSJ model is employed once more. Each junction consists again of the ideal
junction, a resistor and a capacitor in parallel (cf. Fig. 1.6(b)). The difference to the single

9



Chapter 1 The Basics of Josephson Tunnel Junctions and dc-SQUIDs

junction is the contribution of the circulating current J , that flows through each junction in
addition to half the bias current.

I

2
+ J = Ic sinϕ1 +

1
R

~
2e
ϕ̇1 + C

~
2e
ϕ̈1 (1.20)

I

2
− J = Ic sinϕ2 +

1
R

~
2e
ϕ̇2 + C

~
2e
ϕ̈2 (1.21)

The total flux Φ through the SQUID loop is composed of the externally applied flux Φe and
the flux due to a circulating current J .

Φ = Φe − LJ (1.22)

Additionally, the flux quantization connects the phase differences across the junctions and the
total flux through the loop [Sch97]

ϕ1 − ϕ2 =
2πΦ
Φ0

(1.23)

where Φ0 is the flux quantum. Using Eqs. (1.22) and (1.23) the equations of motion of the two
phase differences ϕ1 and ϕ2 can be rewritten as (after dividing by Ic)

1
ω2

p

ϕ̈1 +
1
ωc
ϕ̇1 = j − sinϕ1 −

1
βL
· (ϕ1 − ϕ2 − 2π

Φe

Φ0
) (1.24)

1
ω2

p

ϕ̈2 +
1
ωc
ϕ̇2 = j − sinϕ2 +

1
βL
· (ϕ1 − ϕ2 − 2π

Φe

Φ0
). (1.25)

They are the same equations as for the single junction (1.6) with an additional coupling
term between the two junctions. Here, ωp and ωc are as defined in Eq. (1.8) and Eq. (1.9),
the coupling term is determined by βL = 2πLIc/Φ0 and j = I/(2Ic) is the normalized bias
current through the SQUID. Physically, a change for example in ϕ1 can be understood as the
entry of flux into the loop. The induced circulating current decreases the total current through
junction 1 while it increases the current through junction 2. This, in turn, changes the phase
difference ϕ2 across junction 2 (and also ϕ1).
As was done already for the single junction, the differential equations (Eqs. (1.24) and (1.25))

can be understood as describing the motion of a particle in a potential. Only in this case the
potential is two-dimensional (2D) where a change in ϕ1 or ϕ2 translates into the motion of the
particle in ϕ1- or ϕ2-direction, respectively. By integrating the right part of Eqs. (1.24) and
(1.25) with respect to ϕ1 and ϕ2 this potential v(ϕ1, ϕ2) can be obtained to be

v(ϕ1, ϕ2) = (1− cosϕ1) + (1− cosϕ2)− j(ϕ1 + ϕ2) +
k

2
(ϕ1 − ϕ2 − 2πφe)2. (1.26)

Here, φe = Φe/Φ0 is the external flux normalized with respect to Φ0 and k = 1/βL denotes the
coupling strength. It should be noted that Eq. (1.26) defines the direction of the flux. Positive
flux values increase the current through junction 2, negative values increase the current through
junction 1.
In Fig. 1.7 the 2D potential is shown for different coupling strengths k = 1/βL. The bias

current tilts the potential along the bisectrix ϕ1 = ϕ2 while the coupling imposes a parabolic
deformation perpendicular to the bisectrix. As would be expected, increasing k reduces the
influence of the cosine part, until it can be neglected for k > 1. Then the dc-SQUID behaves

10



1.3 The dc-SQUID
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Fig. 1.7: Two-dimensional potential v(ϕ1, ϕ2) plotted for j = 0.3 and zero external flux for different
coupling strengths k = 1/βL. Note the different scale for v(ϕ1, ϕ2) in the different pictures.
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Chapter 1 The Basics of Josephson Tunnel Junctions and dc-SQUIDs

like a single junction whose critical current can be tuned by changing the external magnetic
flux.3

Throughout, the rest of this work we are only interested in the weak coupling scenario, i.e.
0 < k < 0.7, where the cosine terms create wells and hills.

1.3.1 Flux Dependence

Depending on the coupling strength k, at j = 0 and Φe = 0 there are N(k) different minima
in the potential as depicted by 0, 1 and 2 in Fig. 1.9(a). The other minima (e.g. 1′ and 2′)
can be obtained by a trivial translation or reflection along the bisectrix, provided the SQUID
is symmetric.
In Fig. 1.9, at φe = 0 the barrier separating minimum 0 from minimum 1 is maximal. Upon

increasing the flux, this barrier decreases until at some flux value it has completely vanished.
During this process minimum 0 changes from being the deepest so-called main minimum to
being the second then the third deepest minimum until it turns into an inflection point.
The smaller the barrier is in one direction the less bias current is necessary to remove it.

Therefore, to each minimum n a critical current I(n)
0 (φe) can be assigned, that also depends

on the external magnetic flux.
In Fig. 1.9(a) and 1.9(c), it can be observed that there is an ambiguity in escape direction

for the deepest minimum at integer numbers of Φ0.
In Fig.1.8, the effect of external flux and bias current on the potential landscape is illustrated:

The external flux leads to a decrease of the barrier height in ϕ2-direction while the barrier in
ϕ1-direction is increased (cf. crosses denoted by Z1 and Z2 in Fig. 1.8). Sending current through
the SQUID tilts the potential along the bisectrix and decreases all barriers in the first quadrant
(i.e. ϕ1 > 0 and ϕ2 > 0). However, the saddlepoint in Z1 is lower than the saddlepoint in Z2

and therefore vanishes at smaller bias currents (Fig.1.8(b)). Once the barrier has vanished in
one direction, the particle enters the running state.
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Fig. 1.8: Potential landscape at φe = 0.4 for k = 0.1. Circles denote the minimum (a) and the
inflection point (b). The arrow points into the initial escape direction particle, when entering
the running state.

Physically, applying external flux perpendicular to the SQUID loop induces a circulating
current in the loop. This additional current increases the total current through one junction,

3except for flux values close to odd numbers of half integer flux values φe
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1.3 The dc-SQUID
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Fig. 1.9: Effect of applied external flux φe = Φe/Φ0 on the shape of the potential (Eq. (1.26)) for
k = 0.1. All potentials are shown for j = 0. The white solid circles illustrate the different
minima. The numbers denoting the different minima correspond to the numbers in Fig 1.10.
Arrows point into the possible directions of escape once the bias current is increased in
positive direction. (a) At φe = 0 the minimum 0 is the deepest, the currents through both
junctions are equal and the critical current of the SQUID is I0(0) = 2Ic. (b) The barrier
between minimum 0 and 1 is decreased and therefore vanishes already at a critical current
I0(φe) < 2Ic. (c) At Φe = Φ0 minimum 1 is the deepest minimum and the situation of an
escape out of this minimum is the same as for minimum 0 in (a).
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Chapter 1 The Basics of Josephson Tunnel Junctions and dc-SQUIDs

e.g. junction 2, while decreasing it through junction 1. As a result, the critical current Ic for
junction 2 is reached before the total current sent through the SQUID is I = 2Ic.
In order to obtain the critical current for each flux value quantitatively, the critical point

where the potential barrier vanishes has to be found. Therefore, a simple coordinate trans-
formation x = (ϕ1 + ϕ2)/2 and y = (ϕ1 − ϕ2)/2 makes the potential easier to handle. As
it is needed in Chapter 5 the asymmetry parameters α and η are included. The coordinate
transformed potential then looks like

U(x, y) = 2EJ [−jx− cosx sinx− α sinx sin y − ηjy + k(y − πφe)2]. (1.27)

For the new coordinates, the tilt of the potential due to the bias current is along the x-axis,
while the curvature of the potential resulting from the coupling between the junctions is in
y-direction.
At the critical point (xc, yc) the minimum (A) merges with the saddlepoint (Z1). The

conditions defining a minimum in a 2D potential U(x, y) are given by

Ux = 0 ⇒ sinx cos y − α cosx sin y = j, (1.28)
Uy = 0 ⇒ cosx sin y − α sinx cos y − ηj + 2k(y − πφe) = 0. (1.29)

Here and in the following, Ux = ∂U/∂x. To find the critical current for any minimum, the
properties of the critical point have to be defined: The curvature of the potential has to vanish
in the direction of escape, while the curvature remains positive in the perpendicular direction.
The first condition is fullfilled when

UxxUyy − (Uxy)2 = 0 (1.30)
⇒ (cosx cos y + α sinx sin y)(cosx cos y + α sinx sin y + 2k) =

(sinx sin y + α cosx cos y)2.

The second condition corresponds to Uxx + Uyy ≥ 0, which can be used to test the solutions
for j0, xc and yc obtained when solving Eqs. (1.28)-(1.30) for fixed values of α, η and φe.
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Fig. 1.10: Critical current vs. external flux dependence j(n)
0 (φe) for k = 0.1 with α = η = 0. Red,

blue and green solid lines correspond to minimum 0, 1 and 2 respectively, while the dashed
blue and green lines correspond to the mirrored minima 1′ and 2′.

In Fig. 1.10, the solutions j(n)
0 (φe) for α = η = 0 are plotted for several minima n. They

represent the dependence of the critical current on external flux. The numbers in the plot
correspond to the numbers of the minima in Fig. 1.9(a).
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1.3 The dc-SQUID

The numberN(k) of different minima that are present at the same flux value can be extracted
from the number of curves that exist at one fixed flux value. N(k) depends on the coupling
constant. Decreasing k creates more different metastable minima in the potential and also
decreases the slope of the critical current vs. external flux curve depicted in Fig. 1.10. Increasing
k leads to larger slopes and less different minima.

1.3.2 Escape Mechanisms in Two Dimensions

As for the single junction, thermal fluctuations and quantum tunneling decrease the switching
current Isw of the SQUID compared to its critical value I(n)

0 (φe) (in Appendix C a nomenclature
for the different currents can be found). The same principles of escape out of a metastable
minimum as mentioned earlier for the single junction apply. However, the fact that the particle
can move in two dimensions and that the height of the barrier depends on the escape direction,
influences the escape rates.
At zero applied bias current the particle is localized in one of the available wells. For now,

let us assume that the particle is trapped in the well close to (ϕ1, ϕ2) = (0, 0) as depicted with
point A in Fig. 1.11(a). In order to avoid the ambiguity in escape direction for φe = 0 the
potential is plotted for φe = 0.2. At zero bias current the barrier is lowest at the saddlepoint
denoted by Z. Upon increase of the bias current, all barriers in the first quadrant decrease and
when escaping the phase particle follows the optimal trajectory where it has to overcome the
smallest barrier.
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Fig. 1.11: Escape mechanisms illustrated for φe = 0.2 and k = 0.1.

This optimal trajectory is illustrated in Fig. 1.11. Starting in A, the particle will overcome
the barrier in Z (see Fig. 1.11(b)) and then follow the steepest decline in the potential to the
next minimum in C. For underdamped junctions, the kinetic energy of the particle is large
enough to allow it to overcome the next barrier in ϕ1-direction. Then the coupling parabola
forces it back to the bisectrix. Due to this mechanism the phase particle follows a trajectory
that oscillates around ϕ1 = ϕ2, comparable to a sailing boat moving against the wind. In
order to accelerate the boat has to deviate from its course and move via beating in the favored
direction.
In [LSTU+92] Valérie Lefevre-Seguin et al. developed an approach to calculate the rate

of thermal escape in two dimensions. Therefore, the new complexity of the two dimensional
system is included in the single junction escape rate.
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Chapter 1 The Basics of Josephson Tunnel Junctions and dc-SQUIDs

The defining quantity for the thermal escape rate is the ratio of barrier height to temperature
Ũ0/(kBT ). Since the height of the barrier is not equal in all direction, the point with the
smallest barrier has to be found. Assuming switching currents that are close to the critical
current of the considered minimum n (i.e. I(n)

0 (φe)), the least elevated point in the barrier is
close to the critical point (xc, yc) defined earlier. The potential barrier height Ũ0 can then be
approximated with a third order expansion of the potential U(x, y) around this critical point
and the escape trajectory comes close to being a straight line with an angle θ to the x-axis.
The barrier height is given by

Ũ0(j) =
√

cos3(θ)
j0
u3
U0(j/j0, I0) (1.31)

where θ is the angle between x-axis and escape direction and u3 is the third derivative of
U(x, y) in the critical point (xc, yc) and can be found in Ref. [LSTU+92]. U0(j, Ic) is the
one-dimensional (1D) barrier height given by Eq. (1.11) and j0 = I0/(2Ic) is the normalized
critical current. It is also listed in table C.1 Appendix C.
Additionally, the attempt frequency ωA is influenced by the two dimensionality of the system

ω̃p(j) = ωA(j/j0)
(
u3 cos(θ)

j0

)1/4

. (1.32)

ωA(j) is the 1D attempt frequency given by Eq. (1.10).
Eqs. (1.31) and (1.32) replace the respective 1D quantities in the 1D escape rates, i.e Eqs. (1.13)

and (1.14). Although in Ref. [LSTU+92] only the TA rate was considered, their approach was
also used in Ref. [LYZ+02] to get an expression for the MQT rate:

ΓTA =
ω̃p(j)

2π
ωw⊥
ωs⊥

exp

[
− Ũ0(j)
kBT

]
; (1.33)

ΓMQT =
ω̃p(j)

2π
ωw⊥
ωs⊥

√
864πŨ0(j)

~ω̃p
exp

[
−36

5
Ũ0(j)
~ω̃p(j)

]
. (1.34)

The ratio ωw⊥/ωs⊥ represents the ratio between the frequencies of oscillations perpendicular
to the escape direction in the well (ωw⊥) and in the saddlepoint (ωs⊥). For weakly coupled
SQUIDs, the ratio ωw⊥/ωs⊥ is close to unity except when I0(φe) approaches the maximum
critical value 2Ic where the escape direction is not defined unambiguously. More details for
this case where j0(φe) ≈ 1 can be found in Ref. [LSTU+92].
The thermal or tunneling rates are obtained by first solving Eqs. (1.28)-(1.30) for the specific

flux and asymmetry values to determine j0, xc, yc and θ. These values are used to calculate
the barrier height Ũ0 and the attempt frequency ω̃p. These quantities then are inserted into
Eqs (1.33) and (1.34) to calculate the respective escape rates.
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Chapter 2

The Theory of the Münchhausen Effect

The idea of the Münchhausen effect was introduced by V. B. Geshkenbein, A.U. Thomann and
G. Blatter in Ref. [TGB09]. They suggested that the coupling of one classical and one quantum
mechanical degree of freedom can be realized in an asymmetric dc-SQUID. Since such a coupled
system can escape from a metastable state seemingly on its own account, this behavior was
called “Münchhausen” effect, after Baron Münchhausen who claimed to have rescued himself
out of a swamp by pulling at his own hair.

2.1 Basic Idea

The idea for the experimental realization of the Münchhausen effect is to take a dc-SQUID
with two small identical junctions. Using again the analogy of a particle in a 2D potential, the
intrinsic capacitance of the junction can be considered as the mass equivalent m = ~C/(2e).
Thus, if its capacitance is small enough, the junction exhibits quantum mechanical behavior. In
order to make one junction of the SQUID behave classically, its “mass” is artificially increased by
shunting it with a large capacitor C0 close to the junction as shown in Fig. 2.1. Both junctions

Fig. 2.1: Asymmetric dc-SQUID.

have the same critical current Ic and the same normal resistance R but different capacitances
C1 � C2. Throughout the rest of this thesis the “heavy”, classical junction will be referred to
as junction 1 and the phase difference across it will be denoted as ϕ1. The “lighter”, supposedly
quantum mechanical junction will be named junction 2 with the corresponding phase difference
ϕ2.
The same equations of motion as for the symmetric SQUID (cf. Sec. 1.3) can be applied.

1
ω2

p1

ϕ̈1 +
1
ωc
ϕ̇1 = j − sinϕ1 − k · (ϕ1 − ϕ2 − 2π

Φext

Φ0
) (2.1)

1
ω2

p2

ϕ̈2 +
1
ωc
ϕ̇2 = j − sinϕ2 + k · (ϕ1 − ϕ2 − 2π

Φext

Φ0
) (2.2)
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Chapter 2 The Theory of the Münchhausen Effect

where ωp1 and ωp2 are the plasma frequencies of junction 1 and junction 2, respectively. ωc is
again the reciprocal damping parameter, j = I/(2Ic) denotes the normalized bias current sent
through the SQUID and k = 1/βL = Φ0/(2πIcL) is the coupling strength.
In the particle-in-a-2D-potential picture the particle behaves classically in ϕ1- and quantum

mechanically in ϕ2-direction.

2.2 Strong Damping and Zero Temperature

The basic behavior of the system can be best understood in the case of zero temperature and
for overdamped junctions. Then, the second derivatives in the equations of motion (Eqs. (2.1)
and (2.2)) can be neglected and only the potential energy as given in Eq. (1.26) defines the
behavior of the system.
At zero bias current the particle resides in the minimum at (ϕ1, ϕ2) = (0, 0) (point A in

Fig. 2.2). Once the bias current is increased, there are two scenarios, each starting with the
tunneling in ϕ2-direction, that can lead to an escape. They both are illustrated in Fig. 2.2.

Escape triggered by tunneling (Fig 2.2(a) and 2.2(b)). The particle can tunnel in ϕ2-
direction as soon as the bias current tilts the potential v(ϕ1, ϕ2) enough to lower the next
adjacent minimum in ϕ2-direction (denoted by B) below minimum A. The bias current neces-
sary to enable quantum tunneling in ϕ2-direction depends on the coupling constant k because
k determines the curvature of the potential and thus the energy difference between the bottom
of the two minima. The critical line k+

c,1(j) that connects the bias current necessary to ener-
getically align the two minima with the corresponding coupling constant is calculated in Ref.
[TGB09]:

k+
c,1(j) =

j

π − arcsin j
. (2.3)

As can be seen in Fig. 2.2(b), once the particle has tunneled to (ϕ1, ϕ2) ≈ (0, 2π) (point B
in 2.2(a)), there is no longer a barrier blocking the motion in ϕ1-direction. The particle moves
to the next minimum close to (2π, 2π) and the process repeats itself.

Escape triggered by increasing the bias current (Fig. 2.2(c)-2.2(e)). If the coupling k
between the two junctions is too small, the particle can tunnel to minimum B but there the
potential barrier in ϕ1-direction has not yet vanished completely (cf. Fig. 2.2(d)). A further
increase in bias current is necessary to remove this barrier. The k(j)-dependence of this process
was also calculated in Ref. [TGB09]:

k−c,1(j) =
1− j

3
2π + arcsin(2j − 1)

. (2.4)

When k is decreased even further, at some point the second minimum in ϕ2-direction becomes
accessible via MQT. Thus, the particle tunnels first from A to B but before the barrier in ϕ1-
direction vanishes for minimum B, the particle can tunnel to the next adjacent minimum in
ϕ2-direction. There, no barrier blocks the motion in ϕ1-direction and the particle enters the
running state. Thus, continuing to decrease the coupling does not change the quality of the two
different escape scenarios but only the minimum that has to be considered. The corresponding
equations are given by Eqs. (2.5) and (2.6). The k(j)-dependence corresponding to the ability
of the system to tunnel to the n-th minimum in ϕ2-direction is given by

k+
c,n(j) =

j

(2n− 1)π − arcsin j
. (2.5)

18



2.2 Strong Damping and Zero Temperature

0 1 2

0

1

2

ϕ1 [π]

ϕ
2

[π
]

 

 

−2

0

2

4

6

8

B

A

(a) j = 0.3, k = 0.2

0 1 2

0

1

2

ϕ1 [π]

ϕ
2

[π
]

 

 

−6

−4

−2

0

2

4

6

B

A

(b) j = 0.6, k = 0.2

0 1 2

0

1

2

ϕ1 [π]

ϕ
2

[π
]

 

 

−1

0

1

2

3

4

5

B

A

(c) j = 0.1, k = 0.1

0 1 2

0

1

2

ϕ1 [π]

ϕ
2

[π
]

 

 

−3

−2

−1

0

1

2

3

4

A

B

(d) j = 0.3, k = 0.1

0 1 2

0

1

2

ϕ1 [π]

ϕ
2

[π
]

 

 

−6

−4

−2

0

2

A

B

(e) j = 0.6, k = 0.1

Fig. 2.2: Potential energy landscape. (a) and (b) illustrate the situation for k = 0.2 where the tunnel-
ing of junction 2 leads directly to the escape, while (c)-(e) show the case for k = 0.1, where,
after the tunneling in ϕ2-direction, it is necessary to fully remove the barrier in ϕ1-direction
by increasing the bias current. Solid circles depict minima that the particle cannot leave.
Empty circles show minima, that can be left either via MQT in ϕ2-direction (dashed arrows)
or because the minimum turns unstable in ϕ1-direction (solid arrows).
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Chapter 2 The Theory of the Münchhausen Effect

The line describing the removal of the barrier between the minimum at (ϕ1, ϕ2) ≈ (0, 2πn) and
the adjacent minimum in ϕ1-direction by increasing the bias current is given by

k−c,n(j) =
1− j

(2n− 1
2)π + arcsin(2j − 1)

. (2.6)

k±c,n(j) defines implicitly critical currents j±c,n at which the particle can tunnel or the barrier
has vanished. Those currents are also listed in table C.1 in Appendix C.
In Fig. 2.3, the k±c,n(j)-curves are plotted for several n. Curves with positive slope represent

currents at which the particle can tunnel to the n-th minimum in ϕ2-direction. Curves with
negative slope depict the current at which the barrier of the n-th minimum has vanished in
ϕ2-direction. The effective critical current jeff

c (k) (solid line in Fig. 2.3) corresponds to the
current at which the particle enters the running state, i.e. is able to leave every minimum on
its way down the potential. It is composed partially of j+

c,n and partially j−c,n depending on
which process triggers the escape.

Fig. 2.3: Phase diagram for the Münchhausen effect as a function of the normalized bias current j and
the coupling constant k. Lines with positive slope (dotted/solid) correspond to the tunneling
of the quantum junction while lines with negative slope (dashed/solid) indicate the current
at which the minimum of the classical junction turns into an inflection point. The solid line
represents the effective critical current jeff

c , when the particle can move down the potential.
The inset shows jeff

c (k) for smaller k-values. The dashed line gives a more accurate numerical
result, the solid line is a simplifying analytical approximation. The phase diagram is taken
out of Ref. [TGB09].

Physically, the tunneling process can be understood as the entry of one flux quantum into
the SQUID loop. This creates a circulating screening current in the loop, that decreases the
current through junction 2 and increases the current flowing through junction 1. The potential
for ϕ1 is therefore tilted stronger, resulting in the decrease or even removal of the barrier. Once
the particle advances also in ϕ1-direction the flux quantum exits the loop again.

2.3 Flux Dependence

Experimentally, the phase diagram in Fig. 2.3 can be probed only along horizontal (k = const.)
lines since for one SQUID the critical current of the single junction Ic and the loop inductance
L are fixed design parameters. Thus, many SQUIDs would have to be designed and measured
to test the phase diagram in Fig 2.3 satisfactorily.
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2.3 Flux Dependence

However, in Ref. [TGB09] a way to circumvent this problem was found by including an
externally applied flux into the discussion. As explained in Section 1.3.1, applying external
magnetic flux supports the motion of the particle either in ϕ1- or in ϕ2-direction. Additionally,
it reduces the critical current.
In order to find the flux dependence of the effective critical current of the Münchhausen

effect, the same conditions for tunneling in ϕ2- and moving classically in ϕ1-direction, as
mentioned previously, apply: For tunneling, the present minimum and the adjacent minimum
in ϕ2-direction have to be energetically aligned and for the classical escape in ϕ1-direction the
barrier has to vanish. Again k+

n and k−n were calculated in Ref. [TGB09].

k+
n ≈ j

(2n− 1)− arcsin(j) + 2πφe
(2.7)

k−n ≈ 1− j
(2n− 1

2)π + arcsin(2j − 1) + 2πφe
(2.8)

For fixed k, Eqs. (2.8) and (2.7) can be solved for φe and define implicitly j±c,n(φe). In fact,
if k is fixed, Eq. (2.8) is an approximation of the classical critical current vs. flux dependence
j

(n)
0 (φe), that was already mentioned in Section 1.3.1. In Fig. 2.4, the critical current lines
j+
n (φe) (red dashed) and j−n (φe) (solid blue) are plotted for k = 0.1. The colored arrows depict
the effective critical current jeff

c (φe) at which the system switches to the finite voltage state
depending on the external flux. Without the Münchhausen effect the critical current would
follow the solid blue n = 0 curve.
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Fig. 2.4: Flux dependence of the normalized critical current lines j = I/(2Ic) for k = 0.1. The blue
lines give the classical theory j(n)

0 (φe), the solid blue lines correspond to lines considered in
the text, while the dotted blue lines are included only for completeness. The dashed red lines
show the critical current lines j+

n (φe) (n = 1, 2) of the Münchhausen effect, when tunneling
in ϕ2-direction becomes possible. The colored arrows denote the effective critical current of
the SQUID according to the Münchhausen theory.

At zero flux, upon increasing the bias current, the system first reaches the critical line j+
1

(dashed red) where the particle can tunnel in ϕ2-direction. Now, it finds itself in the minimum
close to (0, 2π). The critical current of this minimum is defined by the n = 1 classical flux line
(solid blue). When the bias current is increased further, the particle will escape in ϕ1-direction
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Chapter 2 The Theory of the Münchhausen Effect

once the n = 1 line is reached. A different situation occurs for example at φe = −0.5. When
increasing the bias current the n = 1 line is crossed while the particle is still localized in the
minimum close to (0, 0) and before tunneling is possible. Thus, once the particle can tunnel to
the minimum close to (0, 2π), this minimum is already unstable in ϕ1-direction.
The reduced effective critical current and the shift in the position of maximum and minimum

of the critical current vs. external flux dependence (cf. Fig. 2.4)can be used in the experimental
search for the Münchhausen effect.
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Chapter 3

Numerical Evaluation of the Asymmetric
dc-SQUID

In order to understand the behavior of the system in more detail and to include the effects
of nonzero temperature, numerical simulations were performed. The results will be presented
together with the experimental ones in Chapter 5.

3.1 The Heun Method

A set of stochastic equations of motion can be written as [GSH88]

~̇x = ~f(~x) + σ(~x)~η (3.1)

where ~f is called the drift term and describes the deterministic time evolution of the system and
η defines the Langevin form of the noise. In the following only white noise will be considered.
This yields for η:

〈ηi(t)〉 = 0, (3.2)
〈ηi(t)ηj(t′)〉 = δijδ(t− t′). (3.3)

The diffusion due to the noise is determined by σ, which in general is a n× n matrix (n being
the dimension of ~x). In the case of white noise, it does not depend on the variable ~x and its
off-diagonal terms are zero.
For ~η = 0, the equations of motion are deterministic. Knowing ~x at t = 0, ~x at t = h can be

obtained by using a Taylor expansion. Depending on the order of the resulting polynomial in h,
an arbitrary accuracy is possible. As shown in Ref. [GSH88], the expansion in h for stochastic
differential equations contains nonlinear functionals of the white noise when including terms
of the order of h2. Their behavior upon integration cannot be predicted and may decrease
the accuracy of the result. Thus, restricted to low order polynomials, the integration has to
be performed using small time steps and a simple, i.e. fast way of calculating ~x(h) has to be
chosen.
The Heun Method [GSH88] is a such simple method. It corresponds to a second order Runge-

Kutta algorithm but includes a white noise term. Knowing the variable ~x(t0) at the start time
t0, its value at time t = t0 + h is obtained by

xi(h) = xi(t0) +
1
2

[
f i(~x(t0)) + f i(~ξ(h))

]
h+ σiWi(h) (3.4)

with
~ξ(h) = ~x(0) + ~f(~x(0))h+ σiWi(h). (3.5)

Here, xi, f i and σi = σii are the variables defined above and depend on the system that shall
be described. Wi are Gaussian-distributed random numbers.
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Chapter 3 Numerical Evaluation of the Asymmetric dc-SQUID

3.2 Application to the Asymmetric dc-SQUID

In the case of the asymmetric dc-SQUID the simulation integrates the two coupled equations
of motion (Eqs. (1.24) and (1.25)) and includes temperature as white noise. Using the Heun
Method they have to be transformed to be differential equations of first order. The system is
then described by

~x =


x1

x2

x3

x4

 =


ϕ1

ϕ2

ϕ̇1

ϕ̇2

 (3.6)

where ϕ1 and ϕ2 are the phase differences across junction 1 and junction 2, respectively. As a
reminder, junction 1 is shunted with a large capacitor, while junction 2 is unshunted, therefore
ωp1 < ωp2.
The drift term ~f(~x) is given by

~f(~x) =


x3

x4

ω2
p1

(
− sinx1 + j − k(x1 − x2)− 1

ωc
x3

)
ω2

p2

(
− sinx2 + j + k(x1 − x2)− 1

ωc
x4

)
 . (3.7)

The effect of finite temperature on the equations of motion can be taken into account by
adding a fluctuation current iF with white noise properties (cf. Ref. [Lic91]).

〈iF,i(t)iF,j(t+ ∆t)〉 = 2
kBT

EJ

1
ωc
δ(∆t)δij (3.8)

Applying this to the numerical method and translating it into σ and η yields σ3 = σ4 =
2kBT/(EJωc) = σ̃ and zero for all other components of σ.
Thus, Eq. (3.1) applied to the asymmetric SQUID becomes

~̇x =


x3

x4

ω2
p1

(
− sinx1 + j − k(x1 − x2)− 1

ωc
x3

)
ω2

p2

(
− sinx2 + j + k(x1 − x2)− 1

ωc
x4

)
+


0
0

ω2
p1σ̃η3

ω2
p2σ̃η4

 . (3.9)

When numerically integrating the system, the Gaussian distributed random numbers Wi

are generated within the simulation. Therefore, a uniform random number generator and a
transformation method from Ref. [num07], that converts the uniform number stream into a
Gaussian distributed one, are used.
In the simulation, the time is additionally normalized to dimensionless units τ = tωp where

ωp = ωp1ωp2/(ωp1 + ωp2). The integration is then performed in normalized time steps of
h = 0.02. The size of the time steps should be as small as possible. However, in order to
simulate the experiment, the current j has to be increased with a given ramping rate. The
time scale of this ramping rate is much larger than the time scale of the plasma oscillations
and a compromise between step size and run time of the simulation had to be found.
The simulation was used to examine the time evolution of the system as well as its escape

properties. For the latter, the integration was repeated ∼ 200 times and the escape statistics
were recorded. In Chapter 5, simulated and measured results are presented and compared.
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Chapter 4

Experimental Realization and Setup

In this chapter the design of the different SQUIDs is presented and the experimental setup is
introduced. Furthermore, the procedure and the results of current ramp measurements, that
were used to experimentally test the SQUIDs, are discussed.

4.1 Chip Design

Four different dc-SQUIDs with suitable coupling constants and critical currents were designed
by Alexey Feofanov. Four chips, each containing all four different SQUIDs, were fabricated in
the Physikalisch-Technische Bundesanstalt (PTB) Braunschweig by Ralf Dolata and Brigitte
Mackrodt in a Nb/AlOx/Nb trilayer process using electron beam lithography, dry etching, an-
odization and planarization by chemical-mechanical polishing [DSZN05] to produce Josephson
junctions with dimensions below 100nm × 100 nm. An image of one full chip can be found in
Appendix A.
Nb has a superconducting gap energy of ∆Nb = 1.5meV and the critical current density of

1.4 kA/cm2 of the wafer was measured very precisely on large area junctions by Kirill Fedorov.
The SQUIDs were designed with parameter values as given in Tab. 4.1; the large capacitor that
increases the capacitance of junction 1 always has a capacitance of C0 = 1 pF, while junction
2 is not capacitively shunted.

SQUID S1 SQUID S2 SQUID S3 SQUID S4
junction size µm× µm 0.2× 0.2 0.2× 0.2 0.5× 0.5 0.5× 0.5

Ic [µA] 0.56 0.56 3.5 3.5
C [fF] 3 3 15 15
L [nH] 4 8 0.25 0.7

ωp1/(2π) [GHz] 6.5 6.5 16 16
ωp2/(2π) [GHz] 119 119 133 133

Table 4.1: Design parameters for the different SQUIDs. Ic is the critical current and C is the intrinsic
capacitance of the single junction. L denotes the inductance of the SQUID loop. The
plasma frequencies ωp1 and ωp2 are the plasma frequencies of the shunted and the unshunted
junction, respectively.

Throughout the rest of this work the different SQUIDs 1, 2, 3 and 4 will be referred to as
S1, S2, S3 and S4, respectively.
In Fig. 4.1 optical microscope images of S4 are shown. The middle image shows the full

dc-SQUID; the gradiometric 8-formed shape of the loop is used to minimize the influence of
unwanted external flux. The image on the left shows a zoom to the unshunted junction. In the
right image the capacitively shunted junction including the capacitor can be seen. The flux
lines are used to couple external flux into the SQUID loop. Since the size of the loop is the
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Chapter 4 Experimental Realization and Setup

(a) S4, unshunted junction (b) S4, complete SQUID circuit
including flux lines

(c) S4, capacitively
shunted junction

Fig. 4.1: Light microscope images taken of S4. For better visibility the colors of the images were
changed. The substrate is shown in grey, the lower Nb layer is red, the upper layer green. The
protection pads, which are required to protect the junctions during the chemical-mechanical
polishing process during fabrication, are colored white.

most considerable difference between the SQUIDs, the other SQUIDs are shown only as full
circuits in Appendix A. The requirement of weak coupling k < 1 and small junctions demands
the fabrication of large loops in order to create large inductances L ∝ A (A being the area of
the loop).

4.2 Experimental Setup

All measurements were performed using a sorption pumped 3He-cryostat HelioxVL made by
Oxford Instruments with a base temperature of Tb ≈ 300mK. The wiring consists of 24 dc
lines without filtering and the wires for the three thermometers installed in the cryostat. For
some of the measurements current dividers were installed on the sample holder.
An image of the sample holder with and without current dividers can be seen in Fig. 4.2.

Fig. 4.2: Sampler holder with (left) and without (right) current dividers installed.

The sample is mounted onto the sample holder, which in turn is installed on the 3He-cryostat
and thermally anchored to it. For additional shielding from external fields, a Permalloy shield
is installed around the sample.

4.3 Current Ramp Measurements

Current ramp measurements are one means to determine the escape rate of the dc-SQUIDs.
Moreover, their direct result, i.e. the probability distribution of the switching currents, gives
information about the underlying processes.
The basic setup and procedure for the current ramp measurements is shown in Fig. 4.3.

A detailed image of the measurement setup and more information about the experimental
procedure can be found in Appendix B.
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4.3 Current Ramp Measurements

Fig. 4.3: (a) Strongly simplified schematic of the measurement setup. (b) I(t) and V (t) for the current
ramp measurement.

The measurement starts by increasing the bias current from a current value Istart . 0,
until the voltage across the SQUID switches to some finite voltage above the chosen threshold
voltage. The time ∆t between the crossing of I = 0 and the switching to a voltage V > Vth is
measured, and, by multiplying it with the ramping rate İ, the switching current is determined.

Isw = ∆t · İ (4.1)

As discussed in Chapter 1, the switching current Isw is less than the critical current Ic in the
presence of thermal noise. Thermal or quantum fluctuations also cause the switching events
to happen at randomly distributed currents. Thus, repeating the ramping experiment ∼ 104

times yields a statistical probability distribution P (I) of switching currents. The probability
that the system will switch to the voltage state in the current interval [I, I + ∆I] is then given
by P (I)∆I. Obviously P (I) is connected to the escape rate, but it also depends on the rate
at which the current is ramped [FD74].

P (I) = Γ(I)
(
dI

dt

)−1(
1−

∫ I

0
P (u)du

)
(4.2)

For data acquisition and control of the external parameters such as applied flux and repetition
rate of the ramping events a custom-made MATLABTM software was used.
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Chapter 5

Experimental Results

In this chapter, measurements performed to observe the Münchhausen effect are reported. At
first, I(V )-curves of the dc-SQUID were recorded with ’GoldExI’ [Gol] to determine the normal
resistance RS of the SQUID. The resistance was then used to calculate the critical current 2Ic
of the SQUID using the Ambegaokar-Baratoff formula [Tin04]. Additionally, current ramp
histograms were recorded at different magnetic flux values. For each SQUID the modulation
of the switching current with increasing current through the flux line was recorded over several
periods. Since this modulation is periodic in Φ0, it allows to calibrate the current through the
flux line with respect to Φ0.
The shape of the histograms is evaluated and the flux dependence of the critical current is

compared with the theoretical predictions.
All measurements, except those examining the temperature dependence, were performed

at the base temperature Tb ≈ 300mK of the 3He-cryostat. Since no filters were installed in
the electrical lines the effective temperature due to noise from the electronic setup seems to
be considerable higher than the physical sample temperature Tb which is measured by the
thermometers. Previous measurements with the cryostat and the same measurement setup
show that the effective temperature is increased by 200− 700mK.
Each of the different SQUIDs is considered separately, since, as it will be shown, they exhibit

qualitatively different behavior which corresponds to different underlying mechanisms. SQUIDs
S3 and S4 are designed to have the same critical current. In the first two sections it will be
shown, that they exhibit thermally activated escape behavior. SQUID S2, on the other hand,
shows in addition to TA also phase diffusion, as will be demonstrated in the last section. If not
pointed out differently, the measurements were performed on the same chip, AF42. SQUID
S1 on chip AF42 was broken; measurements on other chips did not yield analyzable results.
Therefore S1 will not be considered in the following.

5.1 SQUID S3

SQUID S3 is the SQUID with the largest coupling constant k = 0.37, i.e. the smallest induc-
tance L = 700 nH. On the other hand it is one of the two SQUIDs that have larger junctions.
The resulting Josephson energy EJ = IcΦ0/(2π) corresponds to a temperature EJ/kB = 83K
and puts the system in a regime where MQT is not a dominating process (cf. Ref. [KNC+05]).
However, without MQT the Münchhausen effect should not be observable and flux dependent
measurements support this notion, as will be shown.

5.1.1 I(V )-Characteristic

The I(V )-characteristic of the SQUID shown in Fig. 5.1 yields a normal resistance of R = 270 Ω,
and a gap voltage of Vgap = 2.76mV. Using those values the SQUID parameters are calculated.
They are given in Tab. 5.1 together with the designed values.
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Fig. 5.1: I(V )-curve of S3 taken at Tb = 300mK (phonon temperature).

2Ic [µA] RS [Ω] k ωp1/(2π) [GHz] ωp2/(2π) [GHz] Q1 Q2

measured 8.02 270 0.33 16 133 60 7.7
designed 7.0 - 0.37 16 133 - -

Table 5.1: Measured and designed SQUID parameters of S3. Q1 = ωp1C1R and Q2 = ωp2C2R are the
quality factors of junction 1 and junction 2, respectively.

The measured result for the critical current is larger than the designed value. The deviation
of 14% lies within the range that was given in Ref. [DSZN05] but for considerably smaller
junctions. Furthermore, the parameters of the junctions of SQUID S2, which are almost an
order of magnitude smaller in area, agreed quite well with the designed values as will be shown
in Sec. 5.3. It can be assumed that the accuracy of the fabrication process does not decrease
with increasing junction size and, in addition, the critical current density for this wafer was
measured rather precisely on a large area junction by Kirill Fedorov. Since the I(V )-curve
presented here is the only I(V )-curve that was measured and the normal resistance branch
is quite short, any value gained from this measurement cannot be considered to be accurate
enough. Therefore, we will use the designed critical current value throughout the rest of this
section.

Although the designed and measured critical current values are different, the plasma fre-
quencies in Tab. 5.1 are the same. This is based on the interdependence of capacitance and
critical current. Both are proportional to the area of the junction and the plasma frequency
depends only on the ratio of the two values. Of course, this does not hold for the plasma
frequency ωp1 of the shunted junction. But in this case, the change in the intrinsic capacitance
due to the larger junction area is not noticeable (at least not with the accuracy displayed in
Tab. 5.1), since the shunting capacitance is very large. The other possibility, i.e. to explain
the increased critical current by an increased critical current density, would of course not yield
the same result for the plasma frequencies. However, as mentioned earlier, the critical current
density for this wafer was measured rather precisely.
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5.1 SQUID S3

5.1.2 Current Ramp Measurements

Already in the I(V )-curve one can see that the switching current is well below the Ambegaokar-
Baratoff value of the critical current. The current ramp histograms support this conclusion.
The current was ramped at a rate İ = 3.3mA/s and the ramping procedure was repeated
64000 times at a rate of 774Hz.
When calculating the duration of one repetition period Trep and comparing it with the time

∆t it takes to ramp the current to the average switching current, one notices that ∆t > Trep.
Since the current source ignores a start signal generated by the pulse generator if it is already
in ramping mode (cf. details on the measurement setup in Appendix B) the repetition period
is effectively doubled in most ramping events. This is supported by measurements on S4 (next
section) for which there are measurements with a corrected repetition rate.
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Fig. 5.2: Flux dependence of the switching current of S3. The red circles give the mean switching
current of the main peaks. The solid lines give the dependence of the critical current I0 on
external flux φe for the classical symmetric dc-SQUID; dashed lines represent the predicted
switching current due to tunneling. All blue lines were calculated using the designed SQUID
parameters. Colored arrows refer to the respective histograms shown in Fig. 5.3.

In Fig. 5.2, the measured dependence of the switching current on the external flux (red circles)
is shown together with the calculated critical current vs. magnetic flux dependence I0(φe) (solid
lines). The magnetic flux is given in dimensionless units φe = Φe/Φ0. For completeness, the
predictions of the Münchhausen effect I+

c,n(φe) are also plotted with dashed blue lines. The
different currents were introduced in Chapter 1 and a table listing all of them can be found in
Appendix C.
Each data point in Fig. 5.2 represents one measured histogram and gives the mean switching

current of the main peak of the histogram. The main peak corresponds to the escape out of
the deepest minimum and is always situated at higher switching currents.
For the sake of clarity not all histograms are shown in Fig. 5.3. The corresponding data points

in the flux dependence plot are indicated by colored arrows. For better visibility histograms
corresponding to points on the positive and on the negative slope are shown in separate dia-
grams. Histograms that were measured close to the minima of the I0(φe)-curve show additional
peaks at smaller bias currents. They will be discussed later.
At a first glance, it seems as if the measured data agree quite well with the Münchhausen

effect. Indeed, the shift of the flux dependence curve is an intrinsic effect of the Münchhausen
theory [TGB09]. In this picture, when moving from negative to positive external flux values,
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Fig. 5.3: Histograms of S3 at different flux values. Colors of the histograms correspond to the color
of the arrows in Fig. 5.2. The upper diagram shows the histograms on the left shoulder of
the flux dependence, including the histogram with the maximum switching current, while
the lower picture shows histograms right of the maximum. For the sake of clarity, not all
histograms are plotted.

the escape is triggered first by TA in ϕ1-direction. Once the maximum is reached, the TA
escape changes to MQT in ϕ2-direction until it switches back to TA, when the next side
minimum becomes the deepest. Yet, the recorded switching current always stays below the
critical current curves I+(φe) (cf. Appendix C). At a bias current below I+(φe), the adjacent
minimum in ϕ2-direction is still energetically higher than the one currently occupied. Thus,
the Münchhausen effect is not feasible to explain the early switching.
The other possibility is to assume only TA as escape mechanism. Then, the maximum

switching current should be measured at an external flux value of φtheo
e = 0. However, the

curve is shifted from this theoretically expected value to φmeas
e = −0.19. This results either

from some trapped flux in the SQUID loop or asymmetries in the SQUID. In the following,
first the shift in the flux dependence will be discussed and later the histograms and escape
rates will be evaluated.

Shift in Flux Dependence

First of all, the effect of asymmetries in the critical currents of the two junctions α and in the
inductances of the two SQUID arms η is considered (cf. Sec. 1.3). According to Ref. [CT77]
the flux value with a maximum switching current of φmax

e can be used to calculate one of the
asymmetry parameters α and η, assuming that the other is zero.

φmax
e = −βL(α+ η)

2π
(5.1)

Obviously, this yields the same result for both parameters, either α = 0.44 and η = 0 or
α = 0 and η = 0.44. In Fig. 5.4 these two possibilities are compared with the measured results.
Additionally, the effect of additional flux, that might be trapped in the loop is depicted.
All three calculated curves are scaled with respect to the maximum measured switching

current to facilitate the comparison with the measured results. None of the calculated curves
reproduces the measured curve. This is not surprising, since for each flux value the same
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Fig. 5.4: Comparison of the calculated critical current vs. flux dependence with the experimental re-
sults (red). All calculated curves are scaled by a factor 0.7 to match the maximum critical
current 2Ic and the maximum switching current at φmax

e . The dark blue curve corresponds
to a shift of the classical symmetric dependence by ∆φe = −0.19, the pink curve depicts the
effect of α = 0.44 and η = 0 and the light blue curve shows the opposite case, η = 0.44 and
α = 0.

scaling factor is used. However, the measured curve gives, simplified, the current value at
which the barrier height along the optimal trajectory is comparable to temperature. It cannot
be assumed that the ratio between this current value and the critical current I0(φe) stays the
same, when φe is changed.
As it turns out, the flux dependence is explained consistently for all flux values only by a shift

of the I0(φe)-curve due to some trapped flux in the loop. Of course, the proper combination
of α+ η = 0.44 might also yield the desired symmetric result, but in order to achieve balance,
the two asymmetry parameters would have to be roughly equal, i.e. η ≈ 0.2. Such a large
relative difference between the two SQUID arms could be noticed almost with the bare eye,
but certainly under the microscope, which is not the case. Therefore, no asymmetries are
considered in the following discussion and the effective flux in the SQUID loop is taken to be
φeff

e = φmeas
e + 0.19.

Histograms and Escape Rates

We start with comparing the measured histogram with the maximum switching current (down
pointing red arrow in Fig. 5.3) to histograms generated by the simulation described in Chap-
ter 3. The simulated histograms were generated at φeff

e = 0 and for different temperature values
(cf. Fig. 5.5). In the simulation, the designed SQUID parameters, as presented in Tab. 5.1, were
used (apart from R, where only the measured result exists). The only deviation from the ex-
periment is a slight change in the ramping rate. Instead of İ = 3.3mA/s, İ = 4mA/s is used.
However, this effect is negligible.
In order to generate histograms a break condition is included in the simulation which mimics

the threshold voltage in the current ramp measurement. The integration process is repeated
∼ 200 times and the normalized currents at which the break condition is fullfilled are recorded.
The comparison with the simulation shows that the temperature that would match simulation

with measurement is T & 2K. This temperature is supported by the comparison of the escape
rates, but does not agree with the effective temperature usually measured in the cryostat.
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Fig. 5.5: Comparison of the histogram with the maximum switching current, measured at φmeas
e =

−0.19, with histograms generated by the simulation for temperatures T = 1K (green), T =
1.5K (dark blue), T = 2K (pink) and T = 3K (light blue).

Explanations will be given at the end of this section.
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Fig. 5.6: Comparison of the measured escape rates (red solid line) with the calculated escape rates in
a 2D potential. (a) Escape rate measured at φmeas

e = −0.36 and (b) escape rate measured at
φmeas

e = −0.02. The solid blue lines correspond to the TA rates with T = 2.1K. The dark
and light blue lines depict the thermal rate with an attempt frequency defined by ωp2 and
ωp1, respectively. For comparison, the dashed blue lines display the thermal escape rate for
T = 1K (dark and light blue again stand for the light and heavy junction). For completeness,
the purple line shows the MQT rate.

The escape rates for TA and MQT in a 2D potential can be calculated using Eqs. (1.33)
and (1.34). In Fig. 5.6 they are compared to the measured escape rates. Since simplifying
assumptions about the normal mode frequencies do not hold anymore for I0(φe) ≈ 2Ic (cf. Sec.
1.3), the two histograms denoted by green arrows are investigated instead. They are measured
at effective flux values φeff

e = ±0.17. The required parameters xc, yc and I0(φe) are obtained
by solving Eqs. (1.28)-(1.30) for the respective flux values. Inserting those values in Eqs. (1.33)
and (1.34) yields the escape rates for TA and MQT, respectively. They are depicted in Fig. 5.6.
The only difference between light and dark blue curves of the same line style are the attempt
frequencies ωA = ωp(1 − j2)1/4. Due to the capacitive asymmetry of the SQUID the plasma
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5.1 SQUID S3

frequencies of the two junctions are different. The dark blue line represents the escape rate if
the plasma frequency of the unshunted junction 2 is used, the light blue line corresponds to
the escape rate of the shunted junction 1.
In Fig. 5.6, the red measured curves are situated in between the two thermal escape rates

(plotted light and dark blue) calculated with T = 2.1K. This can be understood when consid-
ering the 2D potential for this SQUID at flux values φeff

e = ±0.17 as depicted in Fig. 5.7. The
escape starts with an angle θ = ±23◦. However, the plasma frequencies that determine the
prefactor of the escape rate are defined only in ϕ1- and ϕ2-direction (i.e. θ = ±45◦). Thus,
the real attempt frequency for the actual escape direction lies somewhereibetweennn the two
known frequencies. Consequently, the red measured curves are situated in between the two
calculated rates in Fig. 5.7.
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Fig. 5.7: Potential landscape of S3 for φeff
e = 0.17 (left) and φeff

e = −0.17 (right) at a bias current
that is equal to the normalized critical current j0(φeff

e = ±0.17) = 0.89. The bisectrix is
illustrated by a dashed white line, the escape direction with an arrow.

Additionally, it should be noted that the tunneling rate (solid purple in Fig. 5.6) is calculated
for the correct deflection from the bisectrix but with the plasma frequency ωp2 of the light
junction. However, as explained, the actual attempt frequency is smaller than ωp2. Still, the
calculated rate is much smaller than the measured result. This supports the conclusion that
the Münchhausen effect is not observed in this measurement.
As a matter of fact, even at temperatures below the crossover temperature of Tcr ≈ 1K

when MQT becomes the dominating escape process the escape rate is not increased. Therefore,
although tunneling might be possible at a bias current I+

c this does not mean that the escape
rate is already appreciable at this current value. The ratio of Josephson energy to the plasma
frequency of junction 2 EJ/(~ωp2) ≈ 13 defining the exponent of the tunneling rate indicates
that the bias current at which tunneling is observable is higher than the effective critical current
I+
c considered in Ref. [TGB09].

Flux Dependence of the Histograms

When investigating histograms that are measured at the same absolute value of effective flux,
a difference between the two of them is noticed. In Fig. 5.8 histograms measured at positive
effective flux are plotted with solid lines, histograms at negative effective flux are depicted
with dashed lines. The same color connects histograms measured at the same absolute value
of effective flux.
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Fig. 5.8: Histograms recorded at different flux values. The numbers give the absolute effective flux
value. Histograms plotted with solid lines are measured at positive effective flux while his-
tograms plotted with dashed lines are recorded at negative flux values. Histograms with the
same color correspond to the same absolute flux value given in the picture.

Starting with the solid histograms (φeff
e > 0), it is clearly noticeable that the main peak moves

to smaller switching currents, as the external flux is increased. Upon approaching φeff
e = 0.5 a

second peak arises (red and grey solid) at lower bias currents that results from escape out of
the side minimum as depicted by empty circles in Fig. 5.9.
The behavior of the dashed histograms (φeff

e < 0) is similar to the solid ones: Increasing
the flux in negative direction leads to decreasing switching currents. However, the second
structures at lower currents start to grow much earlier. Besides, there is a threshold value in
the switching current. Starting at φeff

e = −0.5 and increasing the flux towards φeff
e = 0, the

single minor peak turns into a double peak and does not continue to move to smaller bias
currents (cf. grey, red and green dashed histograms in Fig. 5.8).
In the following the above observations shall be explained. In Fig. 5.9, the potential for

φeff
e = ±0.34 is displayed. For negative flux values (top row), the escape out of the main

minimum starts with an escape in ϕ1-direction, the escape out of the side minimum starts in
ϕ2-direction. The opposite applies for retrapping. If the phase particle is retrapped in the main
minimum, its last motion was in ϕ2-direction, while the retrap process in the side minimum
ends with moving in ϕ1-direction. For positive effective flux values, the escape and retrapping
directions are inverted.
In Fig. 5.8, the area beneath the main or the minor peak represents the escape probability out

of the main or the side minimum, illustrated by solid and empty circles in Fig. 5.9. However,
in order to be able to escape out of the side minimum the particle has to be retrapped in it
before. The question is now, why the retrapping probability is higher for one flux polarity
than for the other. The answer is found in the different effective masses of the particle for
the orthogonal directions. In order to be retrapped in a side minimum, the particle has to
overcome an additional barrier either in ϕ1-direction (φeff

e < 0) or in ϕ2-direction (φeff
e > 0).

Once the system enters the voltage state, the bias current is set to zero.1 Since the system
is underdamped, the particle is not retrapped at once but is decelerated and still overcomes
several of the rising barriers before being stopped. When the particle is in the running state,

1in fact, the current is set to a value a little bit below zero, but the system still can relax (cf. Appendix B)
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Fig. 5.9: 2D potential for φeff
e = −0.34 (top row) and φeff

e = 0.34 (bottom row) at bias currents j = 0
(left) and j = 0.5 (right). Solid and empty circles depict the main and the side minimum,
respectively. Arrows point in the direction of escape.

the velocities are equal in both directions. However, due to the larger mass the momentum
in ϕ1-direction is larger and it is easier for the particle to overcome an additional barrier in
ϕ1-direction. Therefore, the probability of being retrapped in the side minimum is larger if the
side minimum is situated in ϕ1-direction of the main minimum. This is the case for negative
effective flux (cf. top row in Fig. 5.9). Indeed, the corresponding dashed histograms in Fig. 5.8
show larger minor structures than the solid histograms.
The reason why the single minor peak changes into a double peak structure and why this

double peak structure does not move to lower switching currents upon decreasing |φeff
e | could

not be found.
Now, the main part of the histograms that result from escape out of the main minima are

considered. The different masses, i.e. plasma frequencies in the orthogonal directions also
affect the escape rate. As the plasma frequency defines the prefactor of the escape rate, a
larger plasma frequency leads to higher escape rates at lower bias currents for the escape out of
the main minimum. As already mentioned above, positive effective flux (solid lines) supports
the escape out of the main minimum in ϕ2-direction and negative flux supports the escape in
ϕ1-direction (cf. Fig. 5.9). Due to the larger plasma frequency in ϕ2-direction, the switching
current for positive effective flux should be lower than for negative effective flux. Indeed, when
comparing histograms at the same absolute flux value, the main part of histograms with the
same absolute flux values are shifted slightly relative to each other at least for |φeff

e | > 0.3
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and the shift increases with increasing flux. Thus, also the main peaks are affected by the
asymmetry of the SQUID.
For flux values |φe| < 0.3, the the angle between escape trajectory and bisectrix is too small

and the attempt frequency is dominated by the mean value of the two plasma frequencies,
instead.

Temperature

The comparisons of the measured results with the simulated histograms as well as the calculated
escape rates yield similar temperatures. Both of them are considerably higher than the phonon
temperature Tb ≈ 300mK that the thermometer displays.
One explanation for this discrepancy could be that the barrier height is smaller than assumed.

This would mean, that the critical current, that defines the Josephson energy, is smaller than
designed. However, although the values calculated from the design and extracted from the
I(V )-curve do not agree perfectly, they indicate a higher critical current, not a lower. Both,
fabrication and the Ambegaokar-Baratoff formula are usually reliable and there is no indication
to assume otherwise. Therefore, this explanation can be excluded.
Another explanation might be that the effective temperature in the experiment is in fact as

high as simulation and calculation let assume. However, the cryostat was and is extensively used
and the temperature never was estimated to be above 1K. Thus, the effective temperature has
to be explained by additional noise, that most probably originates from within the electronic
setup and couples to the SQUID.

5.1.3 Conclusions

The experimental results themselves as well as the comparison with calculations show that the
Münchhausen effect is not observed in this measurement. In fact, the ratio determining the
tunneling rate EJ/(~ωp2) is too large to permit tunneling in ϕ2-direction with an appreciable
rate at bias currents considerably below the critical current. Thus, even for lower temperatures
the Münchhausen effect should not be observable for S3, at least not as strongly as predicted
in Ref. [TGB09].
Histograms recorded at the same absolute flux value but with different polarities show a shift

relative to each other. Additionally, the respective parts of the histograms that correspond to
the escape out of a side minimum occur with different probabilities. Both effects could be
attributed to the different plasma frequencies of junction 1 and junction 2.
Another observation that should be noted is the temperature difference between the physical

temperature of the cryostat and the effective temperature necessary to explain the reduction
of the switching current. Its origin seems to be additional electronic noise.

5.2 SQUID S4

SQUID S4 and SQUID S3 were designed to have the same junction size. As for S3 the designed
values for the critical current will be used. They can be found in Tab. 5.2.

2Ic [µA] RS [Ω]2 k ωp1/(2π) [GHz] ωp2/(2π) [GHz] Q1 Q2

designed 7.0 270 0.13 16 133 60 7.7

Table 5.2: Designed SQUID parameters of S4.
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5.2 SQUID S4

Having the same critical current as S3 results in having the same Josephson energy EJ/kB ≈
83K. Therefore, MQT and the Münchhausen effect can be excluded again as dominating escape
mechanisms. As will be shown, the behavior of S4 is similar to S3, the only difference is the
different coupling constant k which creates more different minima in the potential (cf. Sec.
1.3.1).

5.2.1 Current Ramp Measurements

Switching current histograms were measured at different flux values. Each histogram consists of
64000 single ramping measurements. The repetition rate 774Hz was the same as for S3 and the
ramping rate İ = 3.5mA/s differed only slightly from the ramping rate of S3 (İS3 = 3.3mA).
This means that the same issue of having a repetition period which is shorter than the time
∆t it takes to ramp the current to its switching value arises. However, in this case the mistake
was corrected. The switching current vs. flux dependence over several Φ0 was measured with
the same ramping rate, but only half the repetition rate.3
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Fig. 5.10: Comparison of the mean switching current vs. flux dependence curves with a repetition
rate of 774Hz (red) and 372Hz (blue).

Comparing the two measurements (cf. Fig. 5.10) indicates clearly, that there is no qualitative
and hardly any quantitative difference between the two measurements. Thus, the repetition
period is indeed doubled automatically, as already suggested in the previous section and the
measurement over only one period of Φ0 with more histograms and better statistics can and
will be used. The curves are not symmetric because the mean switching current includes also
the double peak structures that correspond to an escape out of a side minimum. If only the
flux dependence of one single peak is plotted, this asymmetry vanishes (cf. Fig.5.11).
In Fig. 5.12 some of the recorded histograms are presented. The colors correspond to the

arrows in Fig. 5.11 and the histograms always show a double peak structure. Additionally, a
second (minor) double peak structure arises when approaching the minima of the switching
current vs. flux dependence. It again corresponds to the escape out of a side minimum.
The switching current of both main peaks is plotted in Fig. 5.11 in dependence of external
magnetic flux (green and red data points). The solid blue curve represents the classical I(n)

0 (φe)-

2the resistance measured for SQUID S3 is used since no I(V )-curve was recorded for S4 on AF42
3Originally the curve over several periods of Φ0 was recorded and used to determine the relation between the
current sent through the flux line and Φ0.
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dependence. For the sake of completeness, the Münchhausen tunneling curves are plotted with
dashed lines.
The reason why the Münchhausen effect can be excluded as possible escape mechanism is the

same as for S3. Although the smaller coupling parameter k = 0.13 decreases the barrier height
of the 2D potential in ϕ2- (and in ϕ1-) direction, TA is still the dominating process. Even
at lower temperatures MQT is not possible with an appreciable rate for currents considerably
below the critical current.
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Fig. 5.11: Flux dependence of the switching current of S4 compared with the classical theory (solid
blue line) and the prediction of the Münchhausen theory for the flux dependence of I+

c

(dashed blue lines). The red dots correspond to the current value at the small peak, the
green dots to the current value of the high peak. The color of the arrows connects the
indicated data points to the histograms in Fig. 5.12.
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Fig. 5.12: Histograms measured for S4 at different flux values. The upper diagram depicts histograms
measured at φmeas

e ≤ −0.19 while the lower pictures shows histograms for φmeas
e > −0.19.

The different colors correspond to the colored arrows in Fig. 5.11.
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Shift in Flux Dependence

The shift in flux dependence is evaluated as was done already in the previous section for S3.
Using Eq. (5.1), the shift could be explained by α = −0.34 and η = 0 or vice versa and any
combination of α + η = −0.34. The results are presented in Fig. 5.13. The most successful
and only consistent explanation is again a simple shift of the flux dependence curve of the
symmetric SQUID. This means that there is again flux trapped in the loop. The effective flux
threading the loop is φeff

e = φmeas
e − 0.42.
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Fig. 5.13: Comparison of the calculated with the measured (red) critical current vs. flux dependences.
The curve corresponding to the sharp peak at higher bias currents is plotted. Again, the
calculated curves are scaled to match the maximum critical current at φe = 0.42 to facilitate
the comparison. The dark blue curve shows the symmetric flux dependence that is shifted
by ∆φe = 0.42. The light blue curve corresponds to an asymmetry in critical current of
α = −0.34, the purple curve to an asymmetry in inductance, η = −0.34.

Histograms and Escape Rates

As for S3, the histogram at φeff
e = 0 is compared with results of the simulation for different

temperatures (cf. Fig 5.14). The simulated histograms are obtained as explained in the previous
section. Additionally, the escape rates extracted from the histograms at φeff

e = ±0.20 and the
calculated escape rates for the 2D potential are juxtaposed in Fig. 5.15.
Due to the width of the double peak structure the comparison of the simulated with the

measured histograms cannot be very accurate. Nonetheless, it suggests an effective temperature
T ≈ 2K, that was already extracted from the measurements on S3. The same temperature
range 1.5 K < T < 2.1K is obtained when comparing the calculated escape rates with the
measured rates (cf. Fig.5.15). In order to explain the full double peak structure two different
temperatures T = 2.1K (solid blue curves) and T = 1.5K (dashed blue curves) have to be
applied.
The difference between light and dark blue curves are again the different attempt frequencies.

The light blue curve is calculated with the plasma frequency ωp1 of junction 1, the dark blue
curve is calculated with ωp2 of junction 2. The measured rate is situated in between the light
and dark blue curves (as for S3). The reason therefor is the same as for S3. The direction of
escape is not deflected enough from the bisectrix and the escape is determined by an effective
plasma frequency corresponding to the mean value of ωp1 and ωp2.
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Fig. 5.14: Comparison of the measured histogram at φeff
e = 0 (red) with histograms generated by the

simulation for T = 1.5K (blue), T = 2K (pink) and T = 3K (green).
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Fig. 5.15: Measured escape rates (red) at effective flux values (a) φeff
e = −0.2 and (b) φeff

e = 0.2 are
compared with the calculated escape rates. The solid lines depict the thermal escape rates
at T = 2.1K with different attempt frequencies in ϕ1- and ϕ2-direction (light and dark
blue, respectively). The dashed curves give the thermal escape rates at T = 1.5K with the
same color code as for T = 2.1K. The purple lines represent the escape rate due to MQT.

Neither the calculated escape rates nor the simulation reproduces the double peak structure
of the measured histograms. For the calculated escape rate this is obvious since it considers
only one frequency for the full system. The simulation however includes the full asymmetric
system. The fact that it still does not produce two peaks suggests that the reason for the
double peaks is not intrinsic to the system but instead due to some nonequilibrium effect such
as a too short relaxation time in the current ramp measurement.

Double Peak Structure

To be able to continue evaluating the results for S4, the origin of the double peak structure
should be understood. Besides, it should be known which peak to consider in the following
discussion.
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5.2 SQUID S4

In Fig. 5.15, the lower part of the escape rate corresponds to the smaller peak at smaller bias
currents. Its slope agrees almost perfectly with the TA rate at 2.1K, the same temperature
that was already estimated for S3. Thus, it seems to be obvious to choose the lower peak as
the one to consider. However, a mechanism that prevents the escape and keeps the particle
in its minimum in order to explain an additional peak at higher bias currents could not be
found. In contrast, an additional peak at lower currents can be explained by additional noise
or nonequilibrium effects. For instance, the time between stop and start of the current ramp
might have been too short to allow the system to fully relax every time.
The notion, that the additional peak results from nonequilibrium effects is further supported

by measurements on the same SQUID S4 but on another chip (chip AF24). Those measure-
ments were performed with current dividers installed on the sample holder (details can be
found in Appendix B) and with a considerably lower ramping rate İ = 0.12mA/s as well as
longer repetition periods Trep = 100ms. Unfortunately, only the switching current of the full
resistor-SQUID system was measured. The actual switching current of the SQUID had to be
extracted a posteriori by comparing the I(V )-curves with and without current dividers. For
lack of knowledge, the a priori method of renormalizing the ramping rate during the measure-
ment was not used.

3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5

3

switching current Isw [µA]

P
(I

)

Fig. 5.16: Histograms measured for S4 on AF24 with current dividers (solid red line) and for S4
on AF42 without current dividers (dashed red line). Each time the histogram with the
maximum switching current is presented. Note that the position of the single peak histogram
is not very accurate due to the very rough method of recalculating the actual switching
current from the measured one.

Clearly, the histogram obtained for the measurement with current dividers does not display
a double peak structure. Assuming that both SQUIDs are as designed, the only difference
between the two measurements is the reduction of noise due to the installed current dividers,
a lower ramping rate and a longer relaxation time between stop and start of the current ramp.
Thus, the smaller peak at lower currents might in fact be due to a short relaxation time. In

this case, the sharper peak at higher switching currents should correspond to the escape of the
fully relaxed system. Still, some unanswered questions remain, for example, why the slope of
measured escape rate does not agree with the slope of the calculated TA rate in Fig. 5.6 and
why the effective temperature for this SQUID, T ≈ 1.5K is smaller than T ≈ 2K obtained
for S3. Additionally, the width of the histogram recorded with current dividers seems to be
comparable to the width of the full double peak structure in Fig. 5.16.
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Since the real switching current of SQUID S4 on AF24 is known only very roughly, a further
evaluation of this SQUID is omitted. The comparison with simulation as well as with the
calculated escape rates relies on knowing the switching current and therefore cannot be per-
formed. Additionally, the recorded flux dependence of the switching current histograms does
not contain enough data to allow for a satisfying examination of the flux dependence of the
histograms.

Flux Dependence of the Histograms

Although the issue of the double peak structure is not solved completely, the flux dependence
of the histograms shall be evaluated nonetheless. In Fig. 5.18 the 2D potential for effective flux
values φeff

e = ±0.3 is displayed. The white arrows denote the escape direction. As explained
before, the attempt frequencies in the two orthogonal directions are not equal and different flux
polarities support different escape directions. Therefore, similar to SQUID S3 the histograms
show different behavior in positive and negative flux direction (Fig.5.17).
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Fig. 5.17: Measured histograms at different flux values. Histograms plotted with solid or dashed lines
are recorded at effective flux values φeff

e > 0 or φeff
e < 0. Histograms with the same color

correspond to the the same absolute flux value |φeff
e | = 0.2 (dark blue), |φeff

e | = 0.27 (green)
and |φeff

e | = 0.34 (light blue).

In Fig. 5.17, histograms with solid lines are recorded at flux values φeff
e > 0 and histograms

with dashed lines at φeff
e < 0. Histograms with the same color correspond to the same absolute

effective flux value |φeff
e |. Additionally, the colors again correspond to the arrows in Fig. 5.11.

We start with investigating the minor double peak structures that correspond to an escape
out of the side minimum (empty circles in Fig 5.18). At flux values |φeff

e | ≈ 0 (purple histograms)
there is no evidence of escape out of a side minimum. This is because, even if the particle was
retrapped in a side minimum (empty circles in Fig. 5.18), overcoming the barrier between side
and main minimum does not result in the escape to the running state. Instead, the particle is
retrapped in the main minimum.
In Fig. 5.17, at some flux value the minor histograms start to arise. For negative and positive

flux direction they start to grow at different flux values and with different speed, for example
when comparing the dark blue histograms: While there is no second double peak structure at
φeff

e = −0.2 (dashed dark blue), the minor double peaks are clearly visible for φeff
e = 0.2 (solid

dark blue). Nonetheless, at |φeff
e | = 0.34, the dashed minor double peak structure outgrew the

solid minor structure.

44



5.2 SQUID S4

ϕ1 [π]

ϕ
2

[π
]

−1 0 1 2 3
−1

0

1

2

3

ϕ1 [π]

ϕ
2

[π
]

 

 

−1 0 1 2 3
−1

0

1

2

3

ϕ1 [π]

ϕ
2

[π
]

−1 0 1 2 3
−1

0

1

2

3

ϕ1 [π]

ϕ
2

[π
]

−1 0 1 2 3
−1

0

1

2

3

−5

0

5

10

15

Fig. 5.18: 2D potential at a normalized bias current j = 0 (left column) and j = 0.4 (right column)
at φeff

e = −0.3 (top row) and φeff
e = 0.3 (bottom row). Solid circles depict the main

minimum, empty circles the side minimum. Arrows denote the escape direction out of the
main minimum.

The explanation for both observations can be found in the capacitive asymmetry of the
system. For negative applied flux, the particle leaves the main minimum in ϕ1-direction (cf.
top row in Fig. 5.18) but the side minimum in ϕ2-direction. If localized in the side minimum
at zero bias, the particle can leave this minimum already at small currents and in ϕ2-direction.
However, the large mass of the particle in ϕ1-direction prevents the further escape. Or, in
other words, the damping due to the large large shunting capacitance of junction 1 is strong
and causes the particle to be retrapped in the main minimum.
The effect of damping when leaving the side minimum in ϕ1-direction (φeff

e > 0) is small
because it is defined by the small intrinsic capacitance of junction 2. Thus, the particle is
not retrapped in the main minimum and instead, starts to run down the potential. Then the
system switches to the finite voltage state. This explains why there is a minor histogram for
the solid dark blue curve (φeff

e > 0) but none for the dashed dark blue curve.
The reason why the minor peaks grow faster for φeff

e < 0 than for φeff
e > 0 is the same as

explained already for S3: The retrapping probability is not the same for positive and negative
effective flux.
There are two mechanisms that determine the behavior of the minor part of the histograms.

The first mechanism influences the escape probability out of the side minimum and was ex-
plained above. Its impact decreases with increasing absolute value of flux. The second mech-
anism was already explained in the previous section and it affects the probability of being
retrapped in the side minimum and increases with increasing absolute value of flux. Com-
bined, they explain the different evolution of the minor double peaks for positive and negative
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applied flux.
As for S3, a small shift between the main double peak structure of the same color can

be observed. However, it does not seem to increase with increasing flux and the effect is
not strong enough to exclude an inaccuracy in determining the value of the applied flux as
possible explanation for this effect. Another reason for this discrepancy between expectation
and measured result might be the not fully resolved issue of the double peak structure.

5.2.2 Conclusions

SQUID S4 shows similar effects resulting from the capacitive asymmetry as does SQUID S3.
However, due to the not fully explained double peak structure the results were not unambigu-
ous.
The double peak structure also complicated the estimate of the effective temperature 1.5 K ≤

T ≤ 2.1K. Nonetheless, the temperature T = 2.1K also extracted from the measurements on
S3 seems to be an upper limit. The reason for the elevated temperature is electronic noise from
the setup as already mentioned in the previous section.
Due to the high temperature the Münchhausen effect, where MQT has to be the dominating

process, is not possible. However, also at temperatures below the crossover temperature, the
ratio EJ/(~ωp2) is too high to allow tunneling at bias currents much smaller than the critical
current. Therefore, if the Münchhausen effect should establish itself, the effect would not be
as pronounced as predicted in Ref. [TGB09].

5.3 SQUID S2

S2 is designed to have a large inductance but small junctions (L = 8nH, Ic = 600nA). Assum-
ing an effective temperature T ≈ 2K as extracted from the previous measurements, MQT is
not the dominating process.
Nevertheless, this SQUID has something else to offer. The ratio of EJ/kBT ≤ 10 puts the

light junction in another interesting regime, namely in the phase diffusion regime, that was
described in Sec. 1.2.3. The question is now, whether phase diffusion can actually be observed
and what it looks like in a 2D potential.
In Ref. [MLQ+05], the authors report on phase diffusion in SQUIDs with βL � 1. This

creates a strong coupling, which locks the two junctions closely together, thus making the
SQUID behave like a single junction with tunable critical current. Since our SQUIDs have
βL > 1, phase diffusion in truly two dimensions can be examined.

5.3.1 I(V )-characteristic

In Fig. 5.19, the I(V )-curve is shown and the strongly decreased switching current compared
to the critical current 2Ic due to thermal fluctuations becomes obvious. When looking more
closely at the superconducting branch (inset in Fig. 5.19), a small deviation from V = 0 can be
observed for I > 0. This is a typical feature of the I(V )-curve in the phase diffusion regime.
In Tab. 5.3 the designed and measured parameters of the S2 are listed. Vgap = 2.7mV agrees

perfectly with the gap values measured in Ref. [DSZN05] and the deviation of 4% of the
measured critical current value from the designed one is also well inside the specified range.
The resistance that was extracted from the slope of the normal resistance branch of the I(V )-
curve corresponds to the normal resistance of the SQUID RS and, assuming equal junctions,
RS = R/2. R is the normal resistance of the single junction.
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Fig. 5.19: I(V )-curve of S2. The switching current is strongly suppressed. The inset shows a zoom to
voltages |V | < 500µV, where a small deviation from V = 0 of the superconducting branch
is visible for currents I > 0.

2Ic [µA] RS [Ω] k ωp1/(2π) [GHz] ωp2/(2π) [GHz] Q1 Q2

measured 1.17 1840 0.07 6.5 119 155 7.6
designed 1.12 - 0.07 6.5 119 - -

Table 5.3: Measured and designed SQUID parameters of S2. Q1 = ωp1C1R and Q2 = ωp2C2R are the
quality factors of junction 1 and junction 2, respectively.

Using a 12GHz Agilent oscilloscope in the fast acquisition mode and sampling I(V )-curves
over 8 s while the current is ramped from I = 0 to I = Isw at a ramping rate İ = 0.33mA/s
and a repetition rate of 1 kHz, yielded the image presented in Fig. 5.20.

Fig. 5.20: Order of 104 I(V )-curves of S2. Zoom to voltages V < 160µV

Contrary to a first guess there are two branches. One of them shows phase diffusion and has
a lower switching current than the other one that does not show any deviation from V = 0.
Due to low switching current Isw/(2Ic) ≈ 0.1 (a table listing the different currents can be

found in Appendix C) the escape rates in 2D as introduced in Sec. 1.3.2 cannot by applied.
They are only valid for currents close to the critical current.
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5.3.2 Current Ramp Measurements

The current ramp measurements were taken at a ramping rate İ = 0.33mA/s and 1000 ramping
events were taken per second. The resulting current ramp histograms shed more light on the
actual processes and together with the numerical results the behavior of the system becomes
clear.

Phase Diffusion

When measuring histograms, the typical indicator for the phase diffusion regime is the depen-
dence of the histogram width σ on temperature ∂σ/∂T < 0. In Fig. 5.21, histograms recorded
at different temperatures and zero applied flux as well as the temperature dependence of the
standard deviation of the sharp peak is shown.
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Fig. 5.21: (a) Histograms measured at temperatures Tb = 0.3, 0.7, 0.9 and 1.3K. The temperature
corresponds to the temperature Tb measured by the RuO-thermometer of the cryostat.
(b) Temperature dependence of the switching current. The maximum nonzero value of the
corresponding histogram is plotted. (c) Temperature dependence of the standard deviation
σ of the sharp peak. (d) Temperature dependence of the standard deviation of the broader
peak at higher currents.

The switching current decreases with increasing temperature as expected (in Fig. 5.21 the
maximum nonzero value of the histogram is plotted) and especially the sharp low-current peak
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is strongly affected by phase diffusion while ∂σ/∂T of the broader peak is hardly noticeable.
This suggests that the two peaks correspond to different escape mechanisms.

Double Peak Structure

The above observation is supported by the numerical simulation, as will be shown later. First,
in order to understand the double peak structure of the histograms, it is helpful to look once
more at the 2D potential as given in Fig. 5.22. The ϕ2-axis corresponds to the phase difference
across the unshunted junction. The effective mass of the phase particle is small in that direction.
The phase difference across the shunted junction is represented by ϕ1 and the effective mass
of the particle in ϕ1-direction is large.
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Fig. 5.22: Two dimensional potential for k = 0.07, j = 0.1 at φe = 0

At zero current there are three different minima, the particle can be trapped in. They are
denoted by A at (0, 0), B at (0, 2π) and C at (0,−2π) in Fig. 5.22. Minima that are farther
away from the bisectrix (dashed white line in Fig. 5.22) are illustrated by small black circles.
They are metastable but in the temperature range considered here the barrier height U0(0) is
smaller than the amplitude of the thermal fluctuations. Therefore, if the particle is retrapped
in either one of them, it escapes already at j ≈ 0 either to A, B or C, where it is retrapped.
Once the bias current is increased, the potential is tilted along the bisectrix. This means, that

the minimum F is energetically below minimum A. However, the local potential landscape for
minimum F is the same as for minimum A, i.e. the barrier blocking the motion of the particle
that is localized in either one of the minima is the same for both. The same applies for any
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minimum that can be obtained by a simple translation along the bisectrix.
If the particle is localized in the main minimum A, it stays there until the increase in bias

current is sufficient to escape via TA. As EJ/(kBT ) ≤ 10 this is possible already at bias currents
that are considerably smaller than the critical current I(0)

0 (a list of the nomenclature of the
different currents can be found in Appendix C) and the phase particle starts to run down the
potential. This process is illustrated in Fig. 5.23(a).
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Fig. 5.23: Different escape scenarios. The open circle denotes the respective start minimum. Expla-
nations are given in the text.

If the particle is trapped in B, the barrier it has to overcome is smaller than when starting
in A. Therefore it can escape at a smaller bias current. And since (cf. Fig. 5.22) the barrier
separating B from F is higher than the barrier between F and the minimum close to (4π, 2π),
it can run through the minimum in F and reach (4π, 2π). If fate is against the escape, the
motion in ϕ2-direction is negative and the particle runs up against the mountain, looses all
its kinetic energy, turns back across the barrier and is retrapped in the minimum at F (cf.
Fig. 5.23(b)). As mentioned before, F is physically the same situation as A. The particle stays
there until the escape condition as described above for A applies.
If the odds are in favor for escape and the motion in ϕ2-direction is positive, then the moment

of inertia carries the particle on in positive ϕ1-direction, while on a much shorter time scale
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it moves across several minima in ϕ2-direction. It finds itself now in point D (cf. Fig. 5.22),
where the path in ϕ1-direction is only blocked by a small barrier that can be overcome by TA
or kinetic energy. Running across the following potential landscape the particle gains enough
kinetic energy in ϕ1-direction to continue its journey without being stopped by a negative
motion in ϕ2-direction, since its moment of inertia is large enough. The beginning of this
escape process is depicted in Fig. 5.23(c).
The last possibility, i.e the particle being localized in C results in escape either from A or

from B. It leaves its minimum C already at small bias currents, moves then across A until it
is retrapped in B or falls back into the minimum at A. Since the effective mass in ϕ2-direction
is much smaller than in ϕ1-direction, it has a very small moment of inertia and most probably
cannot initialize the motion in ϕ1-direction.
From considering the above scenario, we can argue that the escape directly to the running

state from the side minima like B where ϕ2 ≈ ϕ1 +2π corresponds to the sharp peak at smaller
bias currents. The escape from A (or F ) leads to the broad peak at higher bias currents.
In order to test these predictions, the simulation described in Chapter 3 was used to study

the evolution of the two phase differences in time. Histograms were generated by including a
break condition corresponding to the threshold voltage in the current ramp measurements and
repeating the simulation 200 times.
The results of the simulation for escape from points A and B of Fig. 5.22 are shown in

Fig. 5.24 for T = 0.7K. This temperature is chosen to explain the basic properties of the
results. Later the effect of higher temperature will be discussed.
In Fig. 5.24, the escape out of B happens at lower currents than the escape out of A as

predicted. This can be verified by taking more statistics and generating switching current
histograms for the escape out of the different minima. They are plotted in Fig. 5.25. The upper
picture in Fig. 5.25 shows the histogram when starting in B. As explained above, sometimes
the particle is retrapped in one of the minima along the bisectrix, which results in the small
peak at higher currents. The peak at lower currents corresponds to the successful escape out
of minimum B. The middle picture depicts the statistics for escape out of A and in the lower
diagram the two curves are added together with a ratio 2 : 3. This ratio also results from the
simulation when the time evolution of the particle after setting the bias current back to zero
is monitored and its final state is recorded.
In Fig. 5.26 the behavior of the two variables ϕ1 and ϕ2 in the very small time interval where

the actual escape happens is shown for the escape from A (left picture) as well as from B (right
picture). Additionally, the velocities in the two directions are plotted. They are proportional to
the voltage across the respective junction. In both cases, the escape starts with a phase diffusion
like behavior in ϕ2-direction but the motion in ϕ1-direction is almost constantly accelerating.
In the beginning the zigzag motion in 4π sized steps through the potential as described above
is clearly visible. At some point the jumps and subsequent oscillations in ϕ2-direction cease to
exist and the particle moves along the bisectrix ϕ1 = ϕ2. It has to be emphasized that Fig. 5.26
is a very strong zoom to the vertical line depicted as escape in Fig. 5.24.
However, when comparing simulated and measured histograms in more detail, one notices

that first of all, the escape happens at currents that are much higher than in the experiment,
where the voltage state occurs already at j ≈ 0.1.
Second, in Fig. 5.27 the time evolution of the velocities ϕ̇1 and ϕ̇2 is plotted. It can be

understood as an I(V )-curve where current and voltage axis are exchanged. The simulation
shows for both events (escaping from A or from B) the same resistive branch (black dashed
line) that corresponds to the normal resistance RSQUID = 1822 Ω ≈ RS of the SQUID. Thus,
although being able to explain the two different peaks, so far the simulation does not reproduce
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Fig. 5.26: Zoom to the “moment” of escape from A (a) and B (b). The respective upper picture shows
the values of ϕ1 (blue) and ϕ2 (red), the lower picture the velocities ϕ̇1 (blue) and ϕ̇2 (red).
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Fig. 5.27: Velocities ϕ̇1 and ϕ̇2 for the escape from B (ϕ̇1 in grey, ϕ̇2 red) and escape from A (ϕ̇1

yellow, ϕ̇2 blue). The black line depicts ϕ̇ = γ · Rj where γ = 4Ice/(~ωp) contains the
prefactors due to normalization.

phase diffusion in the sense of a measurable small voltage branch before switching.
To observe phase diffusion, i.e. a branch with ϕ̇ > 0 but with a smaller resistance than the

normal resistance branch, within the simulation, a few tricks have to be performed. For one
thing, a higher temperature, e.g. T = 1.0K is necessary, which allows for an escape at lower
bias currents. The problem hereby is the decreased stability of the side minimum B. If the
particle is localized in B the elevated temperature causes the particle to escape out of B at
currents that are so small that the particle is always retrapped in the main minimum A (or F ).
Therefore, only the escape at higher currents would be observed with the simulation. In order to
circumvent this, the system is prepared artificially in the minimum close to (ϕ1, ϕ2) = (0, 2π) at
some current j > 0 which is close the current where escape is possible without being retrapped.
This and the fact that even with increased temperature the simulated switching current is

still higher than the one measured indicates that the simulation does not take into account the
whole physical system. For example, in the simulation the damping is assumed constant and
derived from the normal resistance of the system, but for higher frequencies such as ωp2 the
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impedance of the lines has to be considered as already mentioned in Sec. 1.2.3. This would
result in a higher damping, which could stabilize the particle in one of the side minima at
higher temperatures.
In Ref. [KFU04] an expression for the I(V )-dependence of the phase diffusion branch is

derived.

Ipd = IcQ
Vp

(V 2) + (δVp)2
(5.2)

In our case, Ic is the critical current for the minimum D in Fig. 5.22, because, as shown by
the simulation (cf. Fig. 5.26), those are the minima in which the particle is retrapped in
ϕ2-direction. Q is the damping parameter, Vp = Φ0ωp/(2π) and δ is connected to the high
frequency impedance via Z = δVpΦ0/(2πkBT ). Fitting Eq. (5.2) to our data with Q and δ as fit
parameters (cf. Fig. 5.28) yields Q = 0.097, which is almost two orders of magnitude smaller
than for the low frequency damping, and δ = 0.13 which translates into a high frequency
impedance Z ≈ 400 Ω (where T = 2K was used). Thus, the damping used in the simulation is
in fact too small to reproduce phase diffusion accurately.
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Fig. 5.28: Phase diffusion branch of the measured I(V )-curve in Fig. 5.19 (red circles) and fit using
Eq. (5.2) (blue line).

This explains why Fig. 5.29, where only ϕ̇1 and ϕ̇2 are plotted, agrees only qualitatively with
the expectations. In the phase diffusion branch, the particle oscillates in ϕ2-direction, which
creates the phase diffusion and hinders the motion in ϕ1-direction. However, the switching
current in the simulation Isw = jsw · 2Ic ≈ 240 nA is considerably higher than the results
measured from I(V )-curves and current ramp histograms and so are the corresponding voltage
and resistance values.
Repeating this simulation several times shows that the current value at which the system

switches to the phase diffusion branch varies strongly, due to the thermal fluctuations while
the escape from phase diffusion to Vgap varies only slightly. This indicates that the final escape
is not a thermally triggered effect but happens once a critical velocity, i.e. voltage, is reached.
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while ϕ2 oscillates strongly.

Flux Dependence

In this last part the flux dependence of the histograms is evaluated. As already mentioned in
the beginning of this section, the flux dependence is very weak, but nonetheless observable. In
Fig. 5.30, the maximum none zero value of each histogram is plotted. The roughness of the
curve is due to the strong thermal fluctuations.
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Fig. 5.30: Flux dependence of S2. The last nonzero value of each histogram is plotted.

For the sake of clarity, only the histograms with maximum (red) and minimum (blue) switch-
ing current are plotted in Fig. 5.31. As expected, the broader peak that corresponds to the
thermal escape out of the main minimum A has its maximum switching current value at φe ≈ 0
and shifts to smaller current values with φe decreasing or increasing.
The sharp peak corresponds to the escape out of B (first to the phase diffusion state and

from there to Vgap). Since B is a side minimum, it should become more stable with negative
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Fig. 5.31: Histograms at different flux values φe = 0 (red) and φe = −0.5 (blue).

flux and less stable for positive flux values or vice versa. But, contrary to those expectations,
the sharp peak follows the motion of the broad peak but with lower amplitude.
The reason for that can be found in the experimental definition of the escape: The voltage

that triggers the stop signal in the measurement is considerably higher than the voltage that
occurs in the phase diffusion regime. Therefore, not escape out of B to the phase diffusion
state is recorded but the switching from phase diffusion to V = Vgap. Thus, not the removal of
the barrier of one specific minimum changes the switching current. Instead, in general the fact,
that the particle that follows the optimal trajectory in the potential has to overcome smaller
barriers for nonzero flux than at zero flux, defines the switching. As a result the critical velocity
is reached at a smaller bias current.

5.3.3 Conclusions

SQUID S2 shows a switching current that is almost an order of magnitude smaller than the
critical current. The reason for that is the ratio EJ/(kBT ) ≤ 10. The existence of a phase
diffusion regime is proven and we were able to explain the double peak structure of the his-
tograms by two different escape scenarios, which is also supported by I(V )-measurements and
the flux dependence of the histograms.
Due to the elevated temperature the escape process is dominated by TA. However, assum-

ing lower temperatures the ratio EJ/(~ωp2) ≈ 2 suggests that the tunneling rate might be
appreciable already at small bias currents. Therefore, it should be possible to observe the
Münchhausen effect in this SQUID.
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In this thesis, capacitively asymmetric dc-SQUIDs with large loop inductance were studied.
Starting from the objective of testing the Münchhausen effect which was introduced in Chap-
ter 2, current ramp measurements were performed on SQUIDs with different parameters and
for different magnetic flux values. Common to all tested SQUIDs is a large inductance of the
individual SQUID loop, resulting in a weak coupling between the two Josephson junctions.
Additionally, a large shunting capacitor is installed close to one of the junctions. The latter
ensures that the shunted junction behaves classically even when the unshunted junction resides
in the quantum mechanical regime.
In order to gain a better understanding of the system, the picture of a phase particle in a two

dimensional and - depending on the coupling strength of the two junctions - rather undulating
potential was applied and used throughout this work. A picture of such a potential can be
found in Fig. 1.7. One axis in the potential corresponds to the phase difference across one
junction and the perpendicular direction represents the phase difference across the other. Due
to the different effective capacitances of the two junctions, the particle behaves differently in
the two directions.
The experimental results of I(V )-characteristics and current ramp measurements were pre-

sented and investigated for three different SQUIDs.

The results indicate, that the SQUIDs S3 and S4 both behave according to classical theory.
Their switching to the finite voltage state is determined by thermal activation. The evaluation
of the histograms and escape rates indicates an effective temperature between T ≈ 1.5K and
T ≈ 2.1K. This large difference between phonon temperature of the cryostat Tb ≈ 300mK
and the measured effective temperatures can be explained by external noise from the electronic
setup which is coupling to the SQUIDs.
We have shown that the Münchhausen effect is not and probably cannot be observed as pre-

dicted in those two SQUIDs, even at lower temperatures. In order to observe the Münchhausen
effect, macroscopic tunneling should occur already at bias currents much less than the critical
current. However, SQUIDs S3 and S4 have comparatively large junctions. Therefore, the ratio
EJ/(~ωp) allows macroscopic quantum tunneling with an appreciable rate only for currents
close to the critical current.
Nonetheless, measurements on both SQUIDs displayed a behavior that was ascribed to two

different, direction dependent, effective masses of the phase particle. The difference between
these masses was noticeable in the flux dependence of the minor peaks, that result from the
escape out of a side minimum of the potential. Additionally, a small relative shift between
histograms measured for different polarities but the same absolute values of flux could be
observed. Although, for S4 this effect was not unambiguous, it was shown that for S3 this shift
was due to the different attempt frequencies in the different escape directions.

SQUID S2 showed two qualitatively different mechanisms of switching to the voltage state.
One of those mechanisms is thermal activation and there is strong evidence for interpreting the
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other as escape via the phase diffusion regime. Thus, these two very different regimes were for
the first time shown to be present simultaneously in one device.
Using numerical simulations the phase diffusion branch could be qualitatively reproduced.

The simulation integrates the coupled differential equations within the RCSJ-model including
a thermal noise term. The agreement of numerical with experimental results can only be
qualitative as the RCSJ-model does not incorporate frequency dependent damping. All the
more, it is quite suprising that phase diffusion is reproduced at all. This is only possible because
two junctions instead of only one are considered. The large capacitor shunting one of them
damps intrinsically the evolution of the other junction.
The simulation shows that the two different escape channels correspond to the different

initial positions of the phase particle in the two dimensional potential: Starting from the more
elevated side minimum leads to phase diffusion while being (re)trapped in the deeper minimum
results in escape via switching to the running state.
We would expect that for this SQUID the Münchhausen effect should be observable. How-

ever, due to effective temperatures close to T ≈ 2K in the experiment, macroscopic quantum
tunneling of the unshunted junction is not a dominating process. Nonetheless, at lower temper-
atures tunneling should be appreciable already at bias currents considerably below the critical
current.

Outlook

Although the results of the measurements on SQUIDs S3 and S4 showed interesting and consis-
tent results, they raise a few issues that should be examined further. For instance, the effect of
the different plasma frequencies in the two orthogonal directions could be quantified. One way
to realize this is to prepare the system to start always from the same minimum and examine
the minor and major parts of the histograms separately. Additionally, the physical noise source
which elevates the effective temperature should be investigated and removed, if possible.
In what concerns SQUID S2, the examination of phase diffusion in two dimensions could

produce intriguing results. A more detailed investigation of the high frequency properties of
the shunting capacitor and the transmission line impedance should be included. The experi-
mental settings for the Münchhausen effect is not yet optimal in this circuit. At temperatures
attainable in a dilution refrigerator, macroscopic quantum tunneling would be the dominating
escape mechanism and tunneling would be appreciable already at relatively small bias currents.
In this case the Münchhausen effect should be observed. It will be interesting to see if and how
experiment and theoretical predictions agree.
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Chip and Sample Design

In Fig.A.1 an example of a designed chip (chip AF42) is displayed. Each chip has a size of
9×9mm2 and the four SQUIDs are arranged around the center structure. This center structure
is not connected to the experiments presented in this work and may differ from chip to chip.
However, the arrangement of the SQUIDs is always the same. Two SQUIDs are placed on
opposite sides of the chip and share a common flux line. In this way the number of necessary
electrical lines is reduced.

Fig. A.1: Layout of chip AF42. The four different SQUIDs are indicated by arrows. The structures in
the center of the chip are not of interest for this thesis. Red lines and areas correspond to the
bottom layer and blue areas and lines to the top layer. The bonding pads are colored orange.
The little black square in one corner of each SQUID depicts the shunting capacitance C0

(not to scale).

Blue areas and lines correspond to the top layer, red areas to the bottom layer. Both layers
are made from Nb of 150 nm thickness. In the junction area, in between the two layers there is
a very thin isolating barrier of 10 nm thickness of Al/AlOx. The leads to the SQUIDs partially
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run on top of each other. In this case bottom and top layer are isolated against each other
with a thin layer of NbO5 and a thick layer (∼ 150 nm) of SiO2. In one corner of each SQUID
a small black square can be found. It depicts the position of the shunting capacitor C0 but
does not shown the capacitor to scale.
It is clearly visible that the loop sizes, i.e. the inductances are different for each SQUID. The

two large inductance SQUIDs S1 and S2 have a single junction area of 0.2× 0.2µm2 while the
small inductance SQUIDs S3 and S4 have a single junction area of 0.5 × 0.5µm2. The width
of the lines that form the SQUID is 10µm.

Optical microscope images of S1, S2 and S3 are presented in Fig.A.2. S4 is shown already
in Sec. 4.1 including zooms to the two junctions.

(a) SQUID S1

(b) SQUID S3 (c) SQUID S2

Fig. A.2: Optical microscope images of S1 (top), S3 (bottom left) and S2 (bottom right).

The picture of S2 looks different, because it was too big to fit even in the smallest magnifi-
cation objective of the upright optical microscope. A stereo optical microscope had to be used
instead which has a smaller magnification but a larger field of view.
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Measurement Setup

Current Ramp Measurement

The schematics of the experimental setup for the current ramp measurement is presented in
Fig. B.1.

Fig. B.1: Measurement setup for current ramp measurements.

A sawtooth current generator with adjustable offset and ramping rate İ modulates the cur-
rent of the current source. Additionally, the generator has two trigger inputs for the start and
the stop signal. During the relaxation time the SQUID is biased with a small negative current.
The value of this current is chosen to be small enough so that the SQUID does not switch to
the voltage state for any flux value. The Agilent pulse generator delivers a start signal for the
ramp generator with a repetition rate that is either defined by the MATLABTM measurement
software or adjusted by hand directly at the pulse generator. The current is ramped with a
constant rate. Once it crosses I = 0, a trigger signal starts the counter.
The voltage across the SQUID is measured and as soon as this voltage crosses a set threshold

voltage (Vth ≈ 600µV)1 a trigger signal stops counter and current ramp. The current is set
back to its relaxation value.
The counter measures the time ∆t between the start and the stop signal. The switching

current is then calculated by the data acquisition software which is provided with the ramping
rate İ. The measurement software also controls the current source for the flux line that produces
the flux bias for the SQUID if needed. More details on the measurements setup can be found
in Ref. [WLC+03].

1The threshold voltage could be adjusted between 50-600µV
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Current Dividers

In order to build a current divider, metal-film resistors were soldered between the respective
lines. In Fig. B.2 a schematic of the setup can be found. The resistors have a room temperature
resistance of R1 = 10 kΩ and R2 = 1 kΩ which results in a ratio I1/I2 = 1/11.

Fig. B.2: Schematic of the current divider including the dc-SQUID
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Appendix C

Nomenclature of Critical Currents

notation description introduced on
I bias current through the junction/dc-SQUID p. 4
Ic critical current of the Josephson junction p. 4
j normalized bias current j = I/Ic (single junction) and j = I/(2Ic)

(dc-SQUID)
p. 5 and p. 10

Ir retrapping current at which the energy gained between to adja-
cent maxima in the washboard potential is equal to the energy
dissipated

p. 6

I
(n)
0 (Φe) critical current of the SQUID corresponding to the n-th minimum

and depending on external magnetic flux Φe

p. 12

j
(n)
0 I

(n)
0 /(2Ic) p. 14

Isw switching current of the system p. 15
j+
c,n normalized current at which tunneling to the n-th minimum in

ϕ2-direction becomes possible1
p. 20

j−c,n normalized current at which the barrier of the minimum close to
(0, 2πn) vanishes in ϕ1-direction1,2

p. 20

jeff
c normalized effective critical current due to the Münchhausen effect

composed of j+
c,n and j+

c,n
1

p. 20

Table C.1: Nomenclature for the different specific currents.

1The real current I±c can be obtained by I±c = j±c · 2Ic.
2Analytical approximation of jn

0
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Zusammenfassung

Experimente mit asymmetrischen dc-SQUIDs - auf der Suche
nach dem Münchhausen Effekt

In dieser Arbeit wurden kapazitiv asymmetrische dc-SQUIDs mit großen Induktivitäten unter-
sucht. Ein SQUID (Superconducting QUantum Interference Device) besteht entweder aus zwei
parallel geschalteten Josephson Kontakten (dc-SQUID) oder aus einem supraleitenden Ring,
der von nur einem Josephson Kontakt unterbrochen ist (rf-SQUID). Im Folgenden werden nur
dc-SQUIDs betrachtet. Der kritische Strom eines SQUIDs ist durch den Strom gegeben, bei
dem das SQUID vom supraleitenden Zustand (Nullspannungszustand) in den Spannungszu-
stand umschaltet In diesem Fall ist die Phasendifferenz über den Josephson Kontakten nicht
mehr konstant. Da ein externer magnetischer Fluss durch den SQUID-Ring die Stromverteilung
in den beiden SQUID-Armen beeinflusst und damit auch den Strom, der durch die einzelnen
Kontakte fließt, ist der kritische Strom des dc-SQUIDs vom externen Fluss abhängig.
Das System kann als virtuelles Phasenpartikel in einem zweidimensionalen Potential ver-

standen werden. Ein solches Potential ist in Fig. 1.7 dargestellt. Die eine Achse des Potentials
bezieht sich auf die Phasendifferenz ϕ1 über Kontakt 1, die andere Achse beschreibt die Phasen-
differenz ϕ2 über Kontakt 2. In diesem Bild entsprechen die Kapazitäten der einzelnen Kontakte
der effektiven Masse des Teilchens in den orthogonalen Richtungen. Im Nullspannungszustand
ist das Phasenteilchen in einem Minimum lokalisiert und oszilliert in diesem Minimum mit der
sogenannten Plasmafrequenz.

In Ref. [TGB09] wurde von V. Geshkenbein, A. Thomann und G. Blatter die Idee vorgestellt,
dass ein klassisches Teilchen ein metastabiles Minimum auch am absoluten Nullpunkt (T =
0K) verlassen kann, vorausgesetzt es ist an ein sich quantenmechanisch verhaltendes Teilchen
gekoppelt. Da dieses Verhalten an Baron Münchhausen erinnert, der behauptete sich selbst
(und sein Pferd) an seinen eigenen Haaren aus dem Sumpf gezogen zu haben, wurde dieser
Prozess „Münchhausen“ Effekt genannt.
Experimentell kann ein solches System mit einem dc-SQUID realisiert werden. Einem der

beiden Kontakte wird ein großer Kondensator parallel geschaltet. Im Folgenden wird dieser
Kontakt als Kontakt 1 bezeichnet. Diese große Kapazität nahe einem der beiden Kontakte be-
wirkt, dass sich die Phasendifferenz über diesen Kontakt klassisch verhält. Falls die intrinsische
Kapazität des Kontaktes ohne parallelen Kondensator (im Folgenden als Kontakt 2 bezeichnet)
klein genug ist, zeigt die Phasendifferenz über diesem Kontakt quantenmechanisches Verhalten.
So zum Beispiel die Fähigkeit durch eine Potentialbarriere zu tunneln.
Am absoluten Nullpunkt kann das Teilchen ein Minimum in ϕ1-Richtung erst verlassen, wenn

die Potentialbarriere in dieser Richtung vollständig verschwunden ist. Nichtsdestoweniger ist
Tunneln in ϕ2-Richtung möglich, sobald das benachbarte Minimum energetisch unterhalb des
momentan besetzten Minimums liegt. Nach dem Tunnelprozess in ϕ2-Richtung befindet sich
das Phasenteilchen im benachbarten Minimum, bei dem die Potentialbarriere in ϕ1-Richtung
entweder bereits nicht mehr vorhanden oder aber in jedem Fall verkleinert ist. Der effektive
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kritische Strom, der in diesem Fall den Nullspannungs- vom Spannungszustand trennt, ist somit
niedriger als der kritische Strom des rein klassischen Systems.

Ziel dieser Arbeit ist die Überprüfung der in Ref. [TGB09] gemachten Voraussagen und die
Erprobung weiterer Eigenschaften dieses dynamisch asymmetrischen Systems. Eine der Voraus-
setzungen für die Beobachtung des Münchhausen Effekts ist die schwache Kopplung der beiden
Kontakte. Es ermöglicht unter anderem allerdings auch die Untersuchung von Phasendiffusi-
on in zwei Dimensionen. In Ref. [MLQ+05] wurde Phasendiffusion in dc-SQUIDs beobachtet,
allerdings waren die beiden Kontakte der betrachteten SQUIDs stark gekoppelt wodurch sich
diese SQUIDs wie ein eindimensionales System.1

Vier kapazitiv asymmetrische dc-SQUIDs mit unterschiedlicher Induktivität und unterschied-
lichem kritischen Strom wurden entworfen und in der Physikalisch-Technischen Bundesanstalt
(PTB) Braunschweig hergestellt. Um den Einfluss des Münchhausen Effekts auf den kriti-
schen Strom der SQUIDs und dessen Flussabhängigkeit zu ermitteln, wurden an den SQUIDs
Stromrampenmessungen durchgeführt. Dabei wurden bei variierendem magnetischen Fluss Hi-
stogramme aufgenommen, die der Wahrscheinlichkeitsverteilung des Stromes, bei dem das
SQUID in den Spannungszustand umschaltet, entsprechen. Wegen thermischer Aktivierung und
der Möglichkeit zu tunneln entspricht der tatsächliche “Umschaltstrom” nicht dem kritischen
Strom, sondern liegt etwas darunter. Desweiteren verursachen thermische und quantenmechani-
sche Fluktuationen eine Verbreiterung der Wahrscheinlichkeitsverteilung des Umschaltstroms.
Die experimentellen Ergebnisse der Stromrampenmessungen und Strom-Spannungskurven

für drei unterschiedliche SQUIDs wurden ausgewertet und vorgestellt.

Für die SQUIDs S3 und S4 deuten die Ergebnisse darauf hin, dass sich beide SQUIDs klas-
sisch verhalten. Thermische Aktivierung bestimmt das Umschalten zwischen dem Nullspan-
nungszustand, in dem das Phasenteilchen in einem Minimum lokalisiert ist, und dem Zustand
mit Spannungsabfall am SQUID, bei dem das Teilchen das Minimum verlassen hat und dem
Potentialverlauf folgt. Die Auswertung der Histogramme und Schaltraten ergab eine effekti-
ve Temperatur zwischen T = 1.5K und T = 2.1 im Kryostaten. Die recht große Diskrepanz
zwischen der Phononentemperatur, die die Thermometer wiedergeben T = 300mK und der ef-
fektiv gemessenen Temperaturen kann mittels elektronischem Rauschen aus dem Messaufbau,
das an die dc-SQUIDs koppelt, erklärt werden.
Außerdem wurde gezeigt, dass der Münchhausen Effekt nicht beobachtet wurde und in den

SQUIDs S3 und S4 auch nicht in dem Ausmaß wie theoretisch vorhergesagt beobachtet werden
kann. Dafür müsste makroskopisches Tunneln bereits bei Strömen möglich sein, die deutlich
kleiner als der kritische Strom sind. Allerdings ist das Verhältnis von Josephson Energie zu
Plasmafrequenz EJ/(~ωp) so groß, dass das Tunneln mit nicht vernachlässigbarer Rate nur für
Ströme nahe dem kritischen Strom erlaubt ist.
Nichtsdestoweniger, zeigten die Messungen an beiden SQUIDs ein Verhalten auf, das auf die

unterschiedlichen effektiven Massen des Phasenteilchens in den beiden orthogonalen Richtung
zurückzuführen ist. Hierbei unterschied sich zum einen die Flussabhängigkeit der Nebenstruk-
turen für positiven und negativen magnetischen Fluss. Die Nebenstrukturen entstehen dadurch,
dass das Phasenteilchen nicht im tiefsten Minimum sondern in einem der Nebenminima loka-
lisiert war. Da die Potentialbarriere für diese Nebenminima kleiner ist, als für das Hauptmini-
mum, fällt bereits bei deutlich kleineren Strömen eine Spannung am SQUID ab. Zum anderen

1Außer für externe magnetische Flusswerte nahe ungeraden halbzahligen Vielfachen des Flussquantums.
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konnte eine kleine Verschiebung zwischen Histogrammen festgestellt werden, die bei betragsmä-
ßig gleichen positiven und negativen Flüssen aufgenommen wurden. Diese Verschiebung kommt
dadurch zustande, dass positiver oder negativer magnetischer Fluss das Teilchen zwingt sein
Minimum entweder in ϕ2- oder in ϕ1-Richtung zu verlassen. Da die Plasmafrequenzen in den
orthogonalen Richtungen unterschiedlich sind, unterscheiden sich damit auch die Raten, mit
denen das Teilchen sein Minimum verlässt. Für S4 war der Effekt nicht eindeutig auf die un-
terschiedlichen effektiven Massen zurückzuführen. Im Gegensatz dazu ließ sich für S3 zeigen,
dass sich die Verschiebung zwischen den beiden Histogrammen entsprechend der Erwartungen
mit zunehmendem Betrag des magnetischen Flusses vergrößerte.

Bei SQUID S2 konnten zwei qualitativ verschiedene Mechanismen beobachtet werden, wie
das System zum Spannungszustand schaltet. Einer dieser Mechanismen ist wieder thermische
Aktivierung und es konnte gezeigt werden, dass der andere Vorgang dem Umschalten zwischen
Phasendiffusion und Spannungszustand entspricht.2 Das bedeutet, dass diese sehr unterschied-
lichen Mechanismen zum ersten Mal gleichzeitig im selben System beobachtet werden konnten.
Unter Verwendung numerischer Simulationen konnte der Phasendiffusionszweig qualitativ re-

produziert werden. Die Simulation integriert die gekoppelten Differentialgleichungen des RCSJ-
Modells unter Berücksichtigung thermischen Rauschens. Die Übereinstimmung zwischen Si-
mulation und experimentellen Ergebnissen kann nur qualitativ sein, da im RCSJ-Modell die
Dämpfung nicht frequenzabhängig ist. Um Phasendiffusion in unterdämpften Kontakten zu
beobachten ist frequenzabhängige Dämpfung allerdings eine notwendige Voraussetzung. Umso
mehr überrascht es, dass Phasendiffusion mit der Simulation überhaupt reproduziert wurden.
Der Grund dafür liegt darin, dass zwei gekoppelte Kontakte betrachtet werden. Die große Ka-
pazität des parallelgeschalteten Kondensators dämpft intrinsisch das Verhalten des Kontaktes
ohne zusätzlichen Kondensator.
Mit Hilfe der Simulation wurde außerdem noch gezeigt, dass die zwei unterschiedlichen Um-

schaltprozesse auf die verschiedenen Startpositionen des Phasenteilchens im Potential zurückzu-
führen sind: Wenn das Teilchen aus dem erhöhten Nebenminimum startet, führt das Verlassen
des Minimums zu Phasendiffusion. Befindet sich das Teilchen zu Beginn im Hauptminimum
wird es das Minimum mittels thermischer Aktivierung verlassen und das System schaltet sofort
zum Spannungszustand um.
Außerdem konnte festgestellt werden, dass in diesem SQUID der Münchhausen Effekt beob-

achtbar sein sollte. Wegen effektiver Temperaturen von T ≈ 2K im Experiment ist makrosko-
pisches Tunneln nicht der dominierende Effekt. Bei niedrigeren Temperaturen sollte sich das
ändern und die Tunnelrate bereits bei Strömen deutlich unterhalb des kritischen Stromes nicht
vernachlässigbar sein.

Ausblick

Die SQUIDs S3 und S4 können noch weitergehend untersucht werden. So könnte zum Beispiel
der Effekt der unterschiedlichen Plasmafrequenzen in den orthogonalen Richtungen quantita-
tiv überprüft werden. Dies kann realisiert werden, indem das System künstlich so präpariert
wird, dass das Phasenteilchen immer aus demselben Minimum startet. So könnten Neben- und
Hauptstrukturen separat untersucht werden. Außerdem sollte der physikalische Ursprung des

2Bei Phasendiffusion fällt zwar auch eine Spannung über dem SQUID ab, diese ist jedoch deutlich kleiner als
die Spannung, die dem Spannungszustand entspricht, bei dem das Teilchen ohne angehalten zu werden dem
Potentialverlauf folgt.
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Rauschens, das die effektive Temperatur im Experiment erhöht, gefunden und, wenn möglich,
eliminiert werden.
Was SQUID S2 angeht, könnte die Untersuchung der Phasendiffusion in zwei Dimensionen

unter Einbeziehung der Hochfrequenzeigenschaften des parallelgeschalteten Kondensators und
der restlichen Schaltung interessante Ergebnisse liefern. Außerdem ist die experimentelle Reali-
sierung des Münchhausen Effekts noch nicht abgeschlossen. Bei Temperaturen, wie sie in einem
Mischkryostaten erreichbar sind, sollte makroskopisches Tunneln bereits bei Strömen deutlich
unterhalb des kritischen Stromes beobachtbar sein und somit auch der Münchhausen Effekt.
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