
Cavity QED with Erbium Doped
Crystals Coupled to Microwave

Resonators
Mikrowellen Resonator-Quantenelektrodynamik

mit Erbium-dotiereten Kristallen

Master Thesis of

Andrej Tkalcec

At the Department of Physics
Physical Institute (PI):

Research Group Ustinov

Reviewer: Prof. Dr. Alexey V. Ustinov
Advisor: Prof. Dr. Pavel A. Bushev

Duration: 17. June 2013 – 16. December 2013

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu





I herewith declare that the present thesis is original work written by me alone and that
I have indicated completely and precisely all aids used as well as all citations, whether
changed or unchanged, of other theses and publications.

Karlsruhe, 16. December 2013

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Andrej Tkalcec)





Contents

1. Abstract 1

2. Introduction 3

3. Theory 5
3.1. Basics of Electron Spin Resonance (ESR) Spectroscopy . . . . . . . . . . . . 5

3.1.1. The g-Factor and Magnetic Resonance . . . . . . . . . . . . . . . . . 5

3.1.2. Effective Spin and the Hyperfine Structure . . . . . . . . . . . . . . 12

3.1.3. The g-Tensor and Anisotropy Effects . . . . . . . . . . . . . . . . . . 15

3.1.4. Inhomogeneous Broadening and Spin-Spin Interaction . . . . . . . . 17

3.1.5. Spin-Lattice Interactions . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2. Erbium (Er3+) Doped Crystals . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1. The Lanthanide (4f) Group and Erbium (Er3+) . . . . . . . . . . . . 23

3.2.2. Erbium (Er3+) in Host Material YSO (Y2SiO5) . . . . . . . . . . . . 24

3.2.3. Erbium (Er3+) in Host Material YAlO (YAlO3) . . . . . . . . . . . . 26

3.3. Waveguide Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1. Circuit Model, Q-Factors and the Observed Spectra . . . . . . . . . 28

3.3.2. Resonant Frequencies and the TE011 Mode . . . . . . . . . . . . . . 33

3.3.3. Two-Port Networks and External Coupling . . . . . . . . . . . . . . 36

3.4. Cavity Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . 38

4. Characterization and Measurement of Er:YSO filled Waveguide Resonators 43
4.1. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2. Waveguide Resonator Version 1 . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1. Characteristics and Determination of the Resonant Frequencies . . . 45

4.2.2. ESR Spectroscopy of 200 ppm Doped Er:YSO at mK Temperatures 48

4.3. Waveguide Resonator Version 2 . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1. Design and Characterization . . . . . . . . . . . . . . . . . . . . . . 52

4.3.2. ESR Spectroscopy of 200 ppm Doped Er:YSO at mK Temperatures 57

4.3.3. ESR Spectroscopy of 50 ppm Doped Er:YSO at mK Temperatures . 58

4.3.3.1. Strong Coupling . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.3.2. Power Dependance of the Strongly Coupled Transition . . 70

4.3.3.3. Coupling Strength Versus Temperature . . . . . . . . . . . 71

5. Measurements using Superconductive Lumped-Element Resonators 75
5.1. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2. ESR Spectroscopy of 200 ppm Doped Er:YAlO using a 9 LEKID Resonator 76

5.3. ESR Spectroscopy of 200 ppm Doped Er:YAlO using a 3 LEKID Resonator 78

5.3.1. Coupling Strength Versus Temperature . . . . . . . . . . . . . . . . 80

5.3.2. Crystal Impurity (Ce3+) . . . . . . . . . . . . . . . . . . . . . . . . . 81

6. Summary 83

v



vi Contents

7. Conclusions and Outlook 85

Bibliography 87

Appendix 91
A. CST Microwave Studio (Simple Manual) . . . . . . . . . . . . . . . . . . . . 91
B. Design Drawings of Waveguide Resonator Version 1 . . . . . . . . . . . . . 95
C. Design Drawings of Waveguide Resonator Version 2 . . . . . . . . . . . . . 96
D. Design Drawing of the Sample Holder . . . . . . . . . . . . . . . . . . . . . 97

8. Acknowledgments 99

vi



1. Abstract

Quantum communication offers the exchange of information in an intrinsically secure way,
where quantum memories will be an integral part of such a quantum infrastructure. This
thesis covers electron spin resonance spectroscopy of erbium doped crystals which could
serve as future quantum memories. Using a 3D waveguide resonator coupled to a 50 ppm
erbium doped Y2SiO5 (Er:YSO) crystal, strong coupling of 21 MHz with an inhomogeneous
spin linewidth of 18 MHz was observed. Temperature dependent measurements of the
coupling strength showed strong coupling up to approximately 700 mK. In addition, a
200 ppm erbium doped YAlO3 crystal was coupled to a superconducting lumped element
resonator, where strong coupling of 34 MHz with an inhomogeneous spin linewidth of
22 MHz was measured. In contrast to Er:YSO coupled to a waveguide resonator, strong
coupling was measured up to approximately 100 mK. Furthermore, the rare earth impurity
cerium was observed in the Er:YAlO3 crystal.
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2. Introduction

Today, nearly for everyone the access and exchange of information e.g. via the internet
is obvious. Since the beginning of the 90’s of the last century the information network
is rapidly growing and efforts have been done to establish fast, easy and secure ways of
information exchange. As fast as this information technology is growing, as more difficult
it becomes to keep the exchange of information secure.

A way to solve this problem could be found in the discipline of Quantum Communica-
tion, which allows the transmission of information in an intrinsically secure way [GT07].
Quantum Communication Networks are able to combine several types of systems which
transmit, receive and process information using quantum algorithms [Kim08]. The nodes
of such networks can be realized using e.g. superconducting (SC) quantum circuits oper-
ating in the GHz frequency range [CW08], whereas fiber optics operating at near infrared
can be used to link them over long distances.

An already well established technique in today’s telecommunication industry is the us-
age of the Telecom C-band in optical fibers at a wavelength between 1.530 and 1.565
µm. The so called conventional erbium window provides very low signal attenuation in
optical fibers, whereas additionally high performance erbium doped fiber amplifiers are
available. Therefore, the usage of the rare earth element erbium (Er3+) embedded in crys-
talline host materials like yttrium orthosilicate (Y2SiO5, YSO) or yttrium orthoaluminate
(YAlO3, YAlO) may be a good choice for a hybrid network architecture, where also im-
portant properties like the coherence time and the spin linewidth seem to be beneficial
[BSTC06, PRW+13]. The nodes of such Hybrid Quantum Networks typically operate in
the microwave and radio frequency range. In order to link both, the reversible conversion
of quantum information between a microwave resonator and an erbium spin ensemble is
beneficial [Ima09].

In this thesis we study the coupling properties of erbium doped crystals to microwave
resonators using Electron Spin Resonance (ESR) spectroscopy [Poo67], also sometimes
termed as Electron Paramagnetic Resonance (EPR) [AB70]. We start with the theoretical
description of the ESR spectroscopy, the crystal and resonator properties, where all the
described components come together in section 3.4 about Cavity Quantum Electrodynam-
ics. Equipped with the theoretical background, subsequent chapters show the achieved
measuring results.

The main focus of this thesis lies on the measurements of different erbium doped crystals
(Er:YSO), coupled to waveguide resonators. In addition, we also mention a short chapter
using superconducting lumped element resonators coupled to a erbium doped crystal with
a different host (Er:YAlO).
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3. Theory

This chapter will furnish our knowledge about Electron Spin Resonance (ESR) of erbium
doped crystals coupled to waveguide resonators, which is useful to interpret and determine
the physical meaning of the results presented in later chapters. The theory starts with
some basics according to ESR spectroscopy, whereas the properties of the samples, namely
the erbium doped crystals, are shortly introduced afterwards. We then continue with the
main measurement devices, which are the waveguide resonators and finish our theoretical
discussions with a combination of some previously discussed properties and effects covered
by Cavity Quantum Electrodynamics.

3.1. Basics of Electron Spin Resonance (ESR) Spectroscopy

Electron Paramagnetic Resonance (EPR) and Electron Spin Resonance were first discov-
ered by Zavoisky in 1945 [Ort68]. The year of discovery coincidences not just by accident
with the end of World War II. During this period high research efforts have been done on
the development of the radar technology [Poo67], which was also definitely pushing the
microwave technology.

For example, today electronic transitions are induced by e.g. incandescent lamps or laser
irradiation with frequencies lying in the optical range occupying oscillations in the THz
region. Whereas, ESR studies the required energy to reorient the electronic magnetic
moments via microwaves, occupying typical frequencies in the GHz region. In order to
get familiar with the ESR spectroscopy, some basic principles are described in subsequent
sections.

3.1.1. The g-Factor and Magnetic Resonance

ESR spectroscopy measures the energy needed to induce a change in orientation of the
electronic magnetic moment in atoms or molecules which contain unpaired electrons. In
principal, paramagnetism is an effect of permanently existing magnetic dipoles, which is
caused by the presence of a non-zero angular momentum.

The total angular momentum J and the magnetic dipole moment µ are related by the
formula

µ = γJ , (3.1)

where γ is the gyromagnetic ratio. The total angular momentum J is the sum of the
particle’s orbital angular momentum L and its spin S (LS-coupling). Therefore, a free
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6 3. Theory

atom or ion takes values of the gyromagnetic ratio of γ = g(q/2m). Equation 3.1 can also
be written in terms of the gyromagnetic ratio, written as

µ = g(q/2m)J . (3.2)

For electrons the letter q (particle charge) is the electron charge (-e) and m equals the
electron mass (me).

The quantity g is the so called g-factor, which is a pure number of order unity, whose value
depends on the relative contributions of orbit and spin to the total angular momentum
[AB70]. If for example only the electron spin momentum is present (free atom or ion), the
g-factor (gS) equals approximately1 2 and γ=q/m.

For J being only L, the g-factor (gL) equals 1. In case of LS-coupling, the more appropriate
value for g is

g =
J(J + 1)(gL + gS) + [L(L+ 1)− S(S + 1)] (gL − gS)

2J(J + 1)
, (3.3)

which is the Landé formula [AB70]. For an atom or ion, e.g. confined in a crystal structure,
the g-factor differs from the Landé formula and is rather know as the spectroscopic splitting
factor.

In presence of a magnetic field2 B, a torque should be present. Such a torque equals ~µ× ~B,
which leads to a precession of the magnetic moment and the total angular momentum
about an axis parallel to the magnetic field.

Figure 3.1.: Precession of a magnetic moment µ around an applied magnetic field B and an
angel θ between µ and B with Larmor frequency ωL.

1 The more precise value is rather g = 2(1 +α/2π− ...) = 2.0023 with α being the fine-structure constant
[AB70].

2 Sometimes in literature the letter H is used for the magnetic field instead of B. However, both values
are connected via the permeability µ = H/B. (Please note: µ is here not the magnetic moment!)

6



3.1. Basics of Electron Spin Resonance (ESR) Spectroscopy 7

Figure 3.1 shows that the change of the magnetic moment ∆µ in a certain time interval
∆t is given as

∆µ

∆t
= ωLµsin (θ) . (3.4)

The angular precession frequency ωL is the so called Larmor frequency. Equation 3.4 can
also be written in terms of the total angular momentum J using equation 3.2. Knowing
that the torque equals dJ/dt = µBsin (θ), the Larmor frequency results in

ωL = g
q

2m
B , (3.5)

where the ratio of µ/J was used according to equation 3.2. In addition, the magnetic
moment could also be defined in terms of energy, which is in classical terms E = ~µ · ~B.
Also classically, there would be an infinite number of possible energy states (all of the
same energy), where the word ’state’ describes a particular direction of the total angular
momentum vector.

On the other hand, in quantum mechanics such states are degenerate or quantized. The z-
component of the total angular momentum can have only certain discrete values, indicated
by the total angular momentum quantum number j with values of j~, (j-1)~, ..., -j~ [FLS64].

If for example j equals 1/2, indicating that the angular momentum quantum number l is
zero and the spin quantum number s is 1/2, this leads to 2j+1 states. Thus, two states
valued with +1/2~ and -1/2~ are referenced as the total magnetic quantum number mj

[SMM05].

The result for the energy along the z axis is

E = ~µ · ~B = µzBz = g
( q

2m

)
JzBz = g

( q

2m

)
mj~Bz , (3.6)

with Jz being mj~. Therefore the energy of the system changes linearly with the magnetic
field B and a slope given by g(q/2m)mj~, as depicted in figure 3.2:

degenerate state

Figure 3.2.: Splitting of a degenerate state in presence of a magnetic field B due to the Zeeman
effect. The energy difference between the two new states with total magnetic
quantum numbers mj = ±1/2 is the Zeeman energy with energy quantas of ~ωL.

7



8 3. Theory

Equation 3.6 could be further simplified as

E = gµBmjB , (3.7)

using µB as the Bohr magneton and dropping the subscript z. Furthermore, the energy
difference in figure 3.2, denoted by ~ωL, is the energy quantum called Zeeman energy,
which is for the example of j=1/2 and the selection rule ∆mj = ±1:

∆E = EZee = gµBB

(
1

2
−
(
−1

2

))
= gµBB = ~ωL . (3.8)

The same result is also achieved by just multiplying equation 3.5 by ~. It is helpful to
write equation 3.8 in terms of numerical values and frequency f, where we use 9.274 ·10−24

J/T for the Bohr magneton (µB) and 6.626 ·10−34 Js for the Planck constant (h) [SMM05].
The final result is given as

g ≈ 0.71447 · 10−10 · f
B

(3.9)

g-
F

ac
to

r

Magnetic Field [T]

Figure 3.3.: Dependence of the spectroscopic g-factor according to the magnetic field B and
two examples of resonant frequencies f0. (Plot according to equation 3.9)

The green curve in figure 3.3 is plotted for f0 = 5.5 GHz and the red curve is plotted for
f0 = 7 GHz. It is clearly seen, that with increased magnetic field B the g-factor drops
nonlinearly (vertical axis in logarithmic scale). In order to measure low g-factors, either
relative high magnetic fields have to be applied, or the resonance frequency has to be
reduced.

As it was previously discussed, in presence of a an external magnetic field, a degenerate
state splits up into new states. This is classically pictured as a magnetic moment which is
aligned parallel or anti-parallel to the B-field, precessing with angular frequency ωL. Quan-
tum mechanically, rather we say that the system is in the upper state (if e.g. mj=+1/2) or
in the lower or down state (if e.g. mj=−1/2), using here again the example of a two state

8



3.1. Basics of Electron Spin Resonance (ESR) Spectroscopy 9

system with energy ~ω. Therefore, the system has to be in one of the mentioned states due
to quantization, if the system is measured (observed). Otherwise also superposition states
(neither up nor down, but rather both) are possible. However, by absorbing or emitting a
certain amount of energy quantum, which corresponds to the energy state difference (the
Zeeman energy), transitions from one energy state to the other are possible.

This brings us to the resonance phenomenon, as only in magnetic resonance the reorienta-
tion of the magnetic moment is sufficiently possible. In order to reorientate the magnetic
moment parallel to e.g. a z-axis, following considerations can be done. If taking a rotating
coordinate system, which rotates with the same angular frequency ω as the precession ωL
about this z-axis, the vector of magnetic moment is at rest in the frame of the rotating
coordinate system. This could now be assumed like there is no applied magnetic field in
the z-direction, as the magnetic moment is not precessing any more. Therefore, apply-
ing now a magnetic field perpendicular to the z-axis, this results in a precession of the
magnetic moment around e.g. the x-axis with a precession frequency proportional to the
applied magnetic field (see equation 3.5). Thus a reorientation of the magnetic moment
with respect to the z-axis is achieved.

Figure 3.4.: Schematic illustration of magnetic resonance. (a) Precession of the magnetic mo-
ment µ with frequency ωL around an applied, static magnetic field B‖ with an
angle θ. If a perpendicular magnetic field B⊥ is applied (α = 90◦), in terms of
a rotating frame (ω = ωL), µ precesses around B⊥ with frequency ω′L. (b) Same
situation as in part (a), except that the frame is not rotating at ωL. This leads to
an effective magnetic field Beff under an angle α. Now the precession takes place
around Beff .

Figure 3.4 (a) depicts schematically the previously mentioned considerations. Figure 3.4
(b) in turn shows the case, where ω 6= ωL. As the coordinate system is not any more
rotating with the Larmor frequency ω < ωL, a partial magnetic field in the direction of
the z-axis is again observed (B′‖). Such a field is described in terms of the applied static
magnetic field B‖ as

B′‖ =
1

γ
(ωL − ω) = B‖ +B∗ , (3.10)

where B∗ is −ω/γ [AB70]. As the perpendicular magnetic field B⊥ is still present, the
precession takes place normal to the direction of an effective magnetic field Beff , spanned

9



10 3. Theory

by B⊥ and B′‖ under the angle α. And from geometrical considerations it is shown, that

γBeff =

√
(γB⊥)2 + ((ωL − ω))2 = ωeff . (3.11)

In practice, the coordinate system is not rotating, but instead the perpendicular magnetic
field B⊥ is used to oscillate [B⊥=a cos(ωt)], in order to achieve the same effect. Therefore,
only the oscillation of this field has to match the magnetic resonance condition ωL = ω in
order to rotate the magnetic moment proportional to the magnitude of B⊥ with respect
to the z-axis and thus to the static magnetic field B‖. Hence, it is also possible to achieve
this effect if B⊥ � B, i.e. for relatively small values of B⊥, as indicated in figure 3.4 by a
smaller arrow compared to B‖. A relatively simple correspondence between the classical
approach and quantum mechanics is given in the case of having j = 1/2. The wave-function
for this case will generally be a linear combination of the wave-functions of the states |Jz〉
= + 1/2 and − 1/2, which can be written as |+〉 and |−〉. A suitable combination with
normalized coefficients is given by Abragam [AB70] as

ψ = cos

(
1

2
β

)
|+〉+ sin

(
1

2
β

)
|−〉 , (3.12)

where β is the angle of circulation like shown in figure 3.5 below. The z-component of the
magnetic moment is given as [AB70]:

µz = 〈ψ∗| γ~Jz |ψ〉 =
1

2
γ~
(
cos2

(
1

2
β

)
− sin2

(
1

2
β

))
=

1

2
γ~cos (β) = µcos (β) .

(3.13)

The same result can also be deduced from figure 3.5:

Figure 3.5.: Rotation of the magnetic moment µ (black solid and dashed arrow) around the
x-axis, which is the same direction of the applied magnetic field B⊥. Obviously
the component of µz changes with angle β.

Figure 3.5 shows the case, where the coordinate system of figure 3.4 is rotated clockwise
by 90 degrees around the z-axis. Now, the magnetic moment vector precesses around the
x-axis, pointing out of the paper plane due to the applied magnetic field B⊥. Therefore,
the component of the magnetic moment with respect to the z-axis (µz) is changing with
angle β. This indicates, that µz = µcos (β), the same result as for equation 3.13 [AB70].

10



3.1. Basics of Electron Spin Resonance (ESR) Spectroscopy 11

It may be noted that the exchange of energy between the oscillatory field and the magnetic
moment is only effective, if the direction of the precession is synchronous with the oscilla-
tory magnetic field, i.e. a circularly polarized field. However, a linearly polarized field can
be decomposed into two circularly polarized fields with opposite senses of rotation. Thus,
surely on of these circularly fields will be in the right sense of rotation with the precession
[Poo67].

Up to now we know, that transitions can be induced by certain energy quanta or photons
of appropriate energy equal to the Zeeman energy. Due to the environment, the transi-
tions could also be induced thermally by photons lying in that energy region. They are
typically described by kBT , with the Boltzmann constant and the temperature in Kelvin,
respectively. In statistical mechanics the probability to find a atom or ion being in one of
the previously mentioned states is proportional to

e−(∆E)/kBT , (3.14)

where we will treat not just a single atom or ion, but N atoms or ions contributing all
together to a net magnetization per unit volume [FLS64]. Those atoms or ions being
in the upper state we denote as Nup = ã e−gµBB(1/2)/kBT , and being in the lower state
as Ndown = ã e+gµBB(1/2)/kBT , where equation 3.7 was used for the state energy with
mj = ±1/2. The constant ã is determined via Nup + Ndown = N . The weighted average
of the magnetic moment 〈µz〉 along the z-axis is given by [Nup(−mj) +Ndown(+mj)] /N ,
resulting in

〈µz〉 = j
e+gµBB(1/2)/kBT − e−gµBB(1/2)/kBT

e+gµBB(1/2)/kBT + e−gµBB(1/2)/kBT

= j tanh

(
gµBB j

kBT

)
,

(3.15)

where mj was replaced by j = 1/2. Plotting this formula, the typical hyperbolic tangent
behavior is observed as expected.

Figure 3.6.: Equation 3.15 plotted according to the argument of the hyperbolic tangent func-
tion resulting in normalized values of the z-component of the magnetic moment.
In order to find the magnetic moment in a defined state, the argument has to have
a relatively large value (if gµBBj is � kBT ). Typically such a case is achieved
by low (cryogenic) temperatures T.

11



12 3. Theory

Applying some numbers to equation 3.15 shows, that for g = 1, B = 300 mT and T = 30
K, the normalized average of ’all’ atoms or ions per unit volume being in e.g. the down
state is ≈ 0.17 %, whereas for a temperature of 30 mK it is already ≈ 93 %. Therefore, it
is best to perform ESR spectroscopy at low temperatures.

3.1.2. Effective Spin and the Hyperfine Structure

Dealing with solid state host materials or crystals, like it is the case for this thesis, the
contributions of such an environment onto the paramagnetic ion have to be taken into
account. The unpaired electron, which is localized on its central ion, moves in such a
crystal field or potential and thus experiences e.g. a ’Stark splitting’ of its orbital states.
In terms of a crystalline field approximation, the result is a splitting of the states, leaving
groups of rather small degeneracy.

This degeneracy within each group depends on the symmetry of the complex and in case
of lower symmetry, the levels may often be only single or degenerate in pairs [AB70]. An
important theorem due to Kramers states, that the degeneracy of such pairs, or doublets
(Kramer doublets), cannot be raised by an electric field, thus any ion with an odd number
of unpaired electrons must always have a doublet as its lowest state [Ort68].

In turn, by the application of a magnetic field and due to the Zeeman effect, ESR is
possible. For an even number of electrons, Kramers theorem no longer applies and the
degeneracy may be completely raised by a crystal field of low symmetry so that singlet
levels remain, may separated by energies too large for ESR spectroscopy [Ort68].

Figure 3.7.: Energy level scheme. (a) Ions possessing an even number of unpaired electrons are
called Non-Kramers ions, where a magnetic field has no influence on the degenerate
states, originating from a weak crystal field. (b) Ions possessing an odd number of
unpaired electrons are called Kramers ions. An applied magnetic field splits the
degenerate state caused by a weak crystal field.

Figure 3.7 displays schematically the behavior of the energy levels for an ion in terms of
a weak crystal field. Figure 3.7 (a) displays the case for a non Kramers ion with a even
number of unpaired electrons, whereas (b) depicts the case for a Kramers ion with a odd
number of unpaired electrons. In order to describe such group of energy states in an easy
way, an effective spin S’ is typically used [Ort68, AB70].

12



3.1. Basics of Electron Spin Resonance (ESR) Spectroscopy 13

This enables us now to write an electronic Zeeman interaction Hamiltonian as

HZee = gµB

(
~B · ~S′

)
. (3.16)

For example, with s′ = 1/2 as the effective spin quantum number, (2s′+1) states with
the effective spin magnetic quantum number ms′ = ±1/2 are present in a magnetic field.
Thus the energy is similar to equation 3.7, just replacing the magnetic quantum number
with the effective one.

These energy levels could then be treated as a two level system at cryogenic temperatures,
where only the lowest doublet is populated.

In analogy to the beforehand mentioned unpaired electrons which posses a magnetic mo-
ment, equal considerations could be adopted for the nucleus with a total nuclear angular
momentum I. Thus, the nucleus with an odd number of protons and neutrons, i.e. with
unpaired nucleons, will show behaviors of a magnetic moment.

If now the nucleus of a paramagnetic ion has such properties, its magnetic moment will
interact with the magnetic moment of the electron, both resulting in the so called hyperfine
structure. The energy needed to observe such structure is given by Abragam [AB70] to be
≈ 10−1 cm−1, which is termed as the magnetic hyperfine interaction in the ’spectroscopic’
energy notation3.

In order to have some order of magnitudes to compare, the energy involved for ESR
interaction is typically ≈ 1 cm−1 or less and that for spin-orbit coupling amounts to be
≈ 102-103 cm−1 [Ort68]. Such interaction of the total electronic angular momentum J
and the total nuclear angular momentum I is described for a free atom or ion by the
Hamiltonian

Hfree = ā
(
~J · ~I

)
, (3.17)

and in a solid by

Hsolid = Ā
(
~S′ · ~I

)
. (3.18)

The coefficients ā and Ā are the magnetic hyperfine constants [AB70]and are rather de-
termined by experiment [Ort68].

In case of a free atom or ion a set of levels with quantum numbers F = (J+I), (J+I−1),
..., |J − I| are formed, where in terms of an effective spin S′, J is replaced.

3 Wave-number notation (cm−1), in terms of the reciprocal wavelength λ.
The energy in terms of electron volts is given by E = hc/λe, with h = Planck’s constant, c the speed

of light in vacuum and e the electron charge. Hence 1 cm−1 ≈ 0.124 meV ≈ 30 GHz

13



14 3. Theory

Figure 3.8.: Hyperfine splitting of an odd valued isotope at externally applied magnetic fields.
Due to the interaction of the magnetic moment of an unpaired electron with ef-
fective spin S′ and a magnetic moment of the nuclei with quantum number I,
the degenerate state splits with quantum numbers F . Such a state again split in
presence of a magnetic field B. According to the selection rules, equidistant hyper-
fine transitions are observed for magnetic fields B � 0, whereas non-equidistant
transitions are more likely at regions with fields B > 0. (see also [AB70])

Figure 3.8 depicts schematically the energy levels for S′ = 1/2 and I = 1 having a Hamil-
tonian of HZee +Hsolid, where A = Ā.

In the zero B-field region a set of levels with F=3/2 (quadruplet) and F =1/2 (doublet) are
present according to 2F+1. In the high magnetic field region (B � 0) the levels diverge
linearly with the B-field for constant frequency.

The level separation for the magnetic quantum numbers mS′ (electronic) and mI (nu-
clear) is in this region equidistant. Therefore, equidistant transitions should be observed
according to ∆mS′ = ±1 and ∆mI = 0.

Getting in the non-linear regime for fields equal to B > 0, the observed transitions are not
equidistant and the situation becomes more complicated to describe. Discussions according
such a regime are rather taken from Abragam [AB70].

Furthermore, it is important to mention, that transitions are best observed at cryogenic
temperatures due to the population of the states. Using the magnetic hyperfine interaction
with ≈ 10−1 cm−1, this would correspond to ≈ 150 mK (E = hc/λ = kBT ).

14
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3.1.3. The g-Tensor and Anisotropy Effects

In the previous sections the g-factor was assumed to be equal in all directions, i.e. that
gx = gy = gz = g.

The same case is present if dealing with a cubic crystal field. In case of crystal environments
which create different kinds of fields, the situation changes and the g-factor takes the form
of a tensor, where equation 3.16 is rewritten to

HZee = µB

(
~B · ĝ · ~S′

)
, (3.19)

with ĝ as the g-factor tensor representing

ĝ =

gxx gxy gxz
gyx gyy gyz
gzx gzy gzz

 . (3.20)

The same is true for equation 3.18 and the magnetic hyperfine constant Ā, which changes
to the magnetic hyperfine tensor Â.

Usually the g-tensor is diagonalized, yielding just the principal values of the tensor for a
suitable choice of axes (principal axes). Thus, equation 3.19 can be written as HZee =
µB
{
gxxBxS

′
x + gyyByS

′
y + gzzBzS

′
z

}
, where gxx, gyy and gzz can be further simplified in

notation just as gx, gy and gz.

With the direction cosines l, m and n the g-factor is given as:

g2 = l2g2
x +m2g2

y + n2g2
z . (3.21)

When the crystal field is axial (x = y 6= z), i.e. showing tetragonal or trigonal behavior,
the g-factor also shows axial symmetry (gx = gy 6= gz).

In order to demonstrate how the g-factor depends on the magnetic field orientation, the
case where a magnetic field B lies in the xz-plane with θ as the angle from the z-axis is
considered. If changing furthermore to a set of rotated axes (x’ and z’) about the y-axis
by an angle φ, the following transformations and definitions are required [AB70]

S′x = S′z′sin (φ) + S′x′cos (φ)

S′y = S′y′

S′z = S′z′cos (φ)− S′x′sin (φ)

g2 = g2
xsin

2 (θ) + g2
zcos

2 (θ)

sin (φ) =
gx
g
sin (θ)

cos (φ) =
gz
g
cos (θ) .

(3.22)

In addition, an oscillating magnetic field B∼cos (ωt) is applied with the y-axis having an
angle η and an angle θ∼ as its projections on the xz-plane with the z-axis. The situation
is depicted in figure 3.9 on the next page for more clarity.

15



16 3. Theory

Figure 3.9.: Applied static magnetic field in the xz-plane with angle θ from the z-axis. Rotated
axes x′ and z′ with offset φ according to the z-axis. An additional oscillating
magnetic field B∼ is applied to the y-axis, possessing an angle η with respect to
the y-axis. The projection of B∼ is determined by the angle θ∼ with respect to
the axis z.

The components of B∼ are Bx∼ = B∼sin (η) sin (θ∼), By∼ = B∼cos (η) and Bz∼ =
B∼sin (η) cos (θ∼). The definition of the Hamiltonian for the oscillatory magnetic field
is H∼ = µBB∼cos (ωt)

{
gxS

′
xl∼ + gyS

′
ym∼ + gzS

′
zn∼

}
[AB70]. For l∼, m∼ and n∼ the

angular functions of the previously mentioned components Bx∼, etc. are used for the
direction cosines. Finally this results in

H∼ = µBB∼cos (ωt)

 S′x′
gxgz
g sin (η) sin (θ∼ − θ) +

S′y′gycos (η) +

S′z′
([
g2
xsin (θ) sin (θ∼) + g2

zcos (θ) cos (θ∼)
]
/g
)
sin (η)

 , (3.23)

where for S′x′ the term was simplified by sin (θ∼ − θ) = sin (θ∼) cos (θ)− cos (θ∼) sin (θ).
Now, the g-factor for the direction of the magnetic oscillating field g∼ is found to be

g2
∼ =

(
gxgz
g

)2

sin2 (η) sin2 (θ∼ − θ) + g2
ycos

2 (η) , (3.24)

where the last term of equation 3.23 for S′z′ was dropped, as for this case B∼ is parallel to
the static magnetic field B and from the discussion in section 3.1.1, no transitions would be
observed. But this does not mean, that the value for g∼ is zero. However, from equation
3.24 it is clear, that g∼ has highest values if B∼ is perpendicular to B.

16
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Figure 3.10.: Dependence of g∼ according to the angles η and θ∼. In case of axial symmetry
with g⊥ = 1 and g‖ = 2, largest values of g∼ are achieved when η = 90◦, i.e.
when B∼ lies in the xz-plane (see figure 3.9). Only if θ∼ = 0 (if B∼ ‖ B), g∼
vanishes (red curve), whereas for values of θ∼ > 0 to 90◦, g∼ increases (green and
yellow curve). For θ∼ = 90◦ and η = 90◦ the case B∼ ⊥ B is given (xz-plane),
reaching highest values of g∼.

Figure 3.10 illustrates the case for axial symmetry, typically written gx = gy = g⊥ and
gz = g‖, where g⊥ = 1 and g‖ = 2 was chosen. The plot depicts that highest values are
achieved for η = π/2 (or η = 0.5π). For θ∼ = 0 (red curve in figure 3.10), being the case
B∼ ‖ B, the value for this example is zero, but increases for θ∼ → π/2 (green and yellow
curve of figure 3.10).

3.1.4. Inhomogeneous Broadening and Spin-Spin Interaction

Further anisotropy effects are associated with the interaction between neighboring para-
magnetic ions (magnetic dipole interaction), called spin-spin interaction. This arises gen-
erally if the magnetic ions have anisotropic g-factors, i.e. a g-tensor. The distance of
interaction or influence is roughly µ/r3 between the ions, being ≈ 0.3 to 0.8 nm [AB70].
This anisotropy effect leads to an inhomogeneous broadening of the spectrum.

Figure 3.11.: Due to various effects like spin-spin interactions in anisotropic media the spectra
are typically inhomogeneously broadened (red, dashed curve). Γinhomo schemati-
cally describes such effects, being the spin linewidth at full width, half maximum.
The inhomogeneous broadening results out of several homogeneously broadened
Lorentz curves (green and blue curves), originating from e.g. individual groups
of ions, distributed around the main resonance angular frequency ω0. Typical
values for Γhomo are found in the Hz range (e.g. 50 Hz), whereas Γinhomo features
values of some tens of MHz [PRW+13], up to several GHz [TAC+10].

17



18 3. Theory

Assuming, there would not be an interaction of the magnetic dipole moments of the para-
magnetic ions between themselves and neglecting other broadening effects up to now, on
applying an external magnetic field all these moments would precess with the same fre-
quency. At resonance only one absorption peak at the resonance frequency should be
observed as indicated in figure 3.11 via a green or blue Lorentz curve with Γhomo as the
homogeneous broadening at full width and half maximum (FWHM).

Theoretically this should just be a delta peak in the spectrum, which is not true in reality,
as the absorption and emission of an energy quanta is related via4 ∆E∆t ≈ ~ (Heisenberg
uncertainty relation). As 1/∆t ≈ ∆ν, every energy difference is related with a frequency
difference ∆ν or bandwidth. Furthermore, such transitions have an exponential behavior
in the time domain, which transforms to a Lorentzian shape function in the frequency
domain, like described in section 3.1.1.

If every paramagnetic ion absorbs or re-emits an energy difference at just one distinct
frequency with a certain bandwidth, this leads to a single Lorentz peak. If there is now
the spin-spin interaction, this could be assumed like a distortion of the mean precession
frequency to slightly other precession frequencies or shifts. Thus, depending on the posi-
tions of the paramagnetic ions in a crystal material, also the influence of the neighboring
ion varies and the precession of the ion is slightly changed.

Such different frequencies are displaced from the mean frequency value, where the intensity
or amplitude of the absorption changes from the center. This causes a broadening of the
spectrum and thus a different shape function results, indicated by the envelope in figure
3.11.

An inhomogeneous external magnetic field would lead to the same effect. For a homogenous
external magnetic field and no spin-spin interaction the term ’homogenous broadening’ is
used.

The frequency bandwidth due to inhomogeneous broadening is a representation of the
average duration of the ’wave train’ emitted or absorbed by the spin system, which is a
combination of the spin-spin interaction and the relaxation time, τ1. M. Fox is declaring
in his book [Fox06] τ2 (T2) as the total dephasing rate, written

1

τ2
=

1

2τ1
+

1

τ2∗
, (3.25)

where here the greek letter notation is used. Usually, τ2∗ is the so called pure dephasing,
e.g. due to spin-spin interaction. Therefore, if τ1 � τ2∗, equation 3.25 just reduces to
τ2∗ = τ2. On the other hand, if τ2∗ � τ1, 2τ1 equals just τ2 [Fox06].

Typically, τ1 is associated with the spin-lattice relaxation time or the longitudinal relax-
ation time, which describes the interaction of a populated or excited upper energy level
with the crystal lattice. The terms, transverse or longitudinal are chosen in analogy to the
cartesian coordinate system with the vertical z-axis (longitudinal) and the perpendicular
xy-plane (transverse).

As the Zeeman energy introduced in section 3.1.1 is typically determined along the z-
axis, the local magnetic moments of the individual paramagnetic ions are not pointing
necessary into the same direction as the external applied magnetic field. The net effect
onto the z component will be therefore relatively constant if the applied magnetic field
is large compared to the local ones. But this is not necessarily true for the transverse
components x and y.

4 ∆E = energy difference, ∆t = time difference, ~ = h/2π = reduced Planck’s constant

18



3.1. Basics of Electron Spin Resonance (ESR) Spectroscopy 19

Such considerations have also been assumed by Bloch (1946) [AB70]. The easiest way to
describe such dephasing effects is therefore the use of the Bloch representation.

The vector sum of individual magnetic moments pointing parallel to the applied magnetic
field are typically defined as the energetically lowest state. In the Bloch representation an
arrow or several arrows (the Bloch vectors) would point into the negative z-direction of
the Bloch sphere. An energetically higher state is reached when the moment points anti-
parallel to the magnetic field, indicated by a vector or vectors pointing into the positive
z-direction.

If now the negative z-direction is defined as the 0 state, the positive z-direction is defined
as state 1. Flipping the vectors from minus z to plus z by a rotation of π will lead to an
increase of the z-component. If now recalling section 3.1.1, the precession of the magnetic
moment about a magnetic field could be indicated by a rotation of the vectors in the Bloch
sphere.

For example, if the vectors would lie in the horizontal plane, they would rotate with the
total precession frequency around the origin of the sphere. Rotations of the vectors form
state 0 to state 1 by π would then result in a helical movement. In the picture of an
rotating frame the vectors will stay at rest. Furthermore, the tips of the vectors will just
follow now a straight line on the surface of the sphere.

The sens of rotation (clockwise or counter-clockwise) depends on the polarization of the
oscillating magnetic field, as discussed in section 3.1.1.

In case of the times τ1 and τ2∗, τ1 would be the time where the vectors in the Bloch sphere
flip back to its initial state (here 0). Thus, the z-component changes in a certain time
interval proportional to a energy change.

The physical explanation of this ’back-flip’ or relaxation will be given after the Bloch
sphere discussion in more detail.

In order to determine τ2∗, the vectors have to be flipped to the horizontal or transverse
plane (xy-plane), where the individual Bloch vectors do not necessarily precess at the main
frequency. Therefore, they would start slowly to rotate in that plane or to fan out. This
leads now to a noticeable change of the x and y-components. This fanning out is now
the previously mentioned pure dephasing effect, indicating that the individual magnetic
moments are not oscillating in phase (e.g. due to inhomogeneous broadening). By rotating
again the vectors by π around the xy-plane, the fanning out process is now reversed. This
will lead to a restoration of the phase relation between the individual vectors and thus to
an emission of a photon (or photons) due to coherent oscillations in phase.

This rephasing time can be used in the so called spin-echo experiments to determine τ2∗.
When measuring τ1, there is always a contribution of τ2∗, as the vectors have always to
pass the xy-plane (equation 3.25). Such rotations of π or π/2 are realized in experiments
by applying appropriate electromagnetic pulses (i.e. the pulse area [Fox06]) at appropriate
resonance frequencys. The recent discussion is depicted in figure 3.12 on the next page.
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20 3. Theory

Figure 3.12.: The Bloch sphere representation, where typically the z-axis is defined as state 0
(-z) and state 1 (+z). The Bloch vector (e.g. the magnetic moment) is pointing
in one of these directions for a certain situation. The vector is rotated (blue,
dotted arrow) around the sphere center by an angle θ, which e.g. represents
a transition given in a two level system of certain energy. Rotations of θ are
indicated by τ1, where rotations of φ (green, dotted arrow) are typically denoted
as τ2∗. The green, dashed arrows represent a fanning out or dephasing of the
individual vectors in the xy-plane, which are then out of phase with respect to
each other.

3.1.5. Spin-Lattice Interactions

In order to understand the spin lattice interaction, some considerations regarding the
lifetime of an energy state or level will be treated first.

Via absorption of e.g. a photon of a certain energy quantum ~ω a lower energetically state
is ’lifted’ into a higher one. Usually, such a system tends to recover back to its initial
lower energy state via a spontaneous or stimulated emission of e.g. a photon, or even
non-radiatively.

However, such transitions are usually described by the Einstein coefficients A for sponta-
neous emission and B for stimulated emission or absorption, where the transition rates are
given as follows [Eic13]:

(
dN2

dt

)
absor

= −
(
dN1

dt

)
absor

= +BuN1(
dN2

dt

)
stimu

= −
(
dN1

dt

)
stimu

= −BuN2(
dN2

dt

)
spont

= −
(
dN1

dt

)
spont

= −AN2 .

(3.26)

N1 is the number of absorbers, N2 is the number of emitters and u is the electromag-
netic (EM) radiation density. This equations already assume that stimulated emission or
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3.1. Basics of Electron Spin Resonance (ESR) Spectroscopy 21

absorption (B) is ’triggered’ by the EM-field, whereas the spontaneous emission5 (A) is
not.

From the last row of equation 3.26 it is deducible that N2 has an negative exponential
time behavior with −t/τ as argument. This behavior leads to an Lorentzian shape in the
Fourier domain.

In thermal equilibrium the populations of both levels or states is constant and their ratio
can be described by a Boltzmann distribution as N2/N1 = Bu/(A+Bu) = exp(−~ω/kBT )
[Eic13]. Using this relation and knowing that τ = (A + 2Bu)−1, following equation is
observed

1

τ
=

~ω3

π2c3
B coth

(
~ω

2kBT

)
= Acoth

(
~ω

2kBT

)
, (3.27)

where u was used as (~ω3/π2c3)(1/(exp(~ω/kBT )− 1)) [AB70].

A quick analysis of equation 3.27 already shows that τ = B/A = π2c2/~ω3. This indicates
that for higher frequencies coefficient A is dominating6. Thus, the lifetime of a upper state
is primarily depopulated via spontaneous emission.

Under considerations that ~ω � kBT in the hyperbolic cosine term, τ becomes inde-
pendent of temperature. For such a case τ is again entirely determined by A, where for
frequencies typically used in ESR spectroscopy spontaneous emission could be neglected
[Poo67]. On the other hand, for ~ω � kBT , τ depends also on temperature. Such inter-
actions are typically called thermal electromagnetic radiation field density interactions.

If using B = (2π2/3)γ2 [AB70] according to J = 1/2 and g = 2, for a frequency of 5 GHz
and a temperature of 1 K a result of τ ≈ 2 · 106 seconds is found.

In experiments, such values are of course not observed, as we are typically not dealing
with just single spins.

Furthermore, we are also faced with a solid state surrounding, where interactions are
rather induced by lattice vibrations, i.e. mechanical motions which create oscillatory
electromagnetic fields. In analogy to the thermal electromagnetic radiation field density,
such lattice vibrations could be associated with a phonon radiation field density.

Previously, the radiation density u was used for photons, with c3 in the denominator as
the speed of light. Now, the radiation density is rewritten in case of lattice vibrations, i.e.
replacing c3 by v3, where v is the velocity of sound.

The phonon radiation field density is:

U dω =
3~ω3

2π2v3

dω

exp(~ω/kBT )− 1
, (3.28)

where the prefactor of 3/2 results out of the possible phonon-modes [AB70]. In order to
describe now the spin-lattice relaxation time τ1, there are typically three processes involved.
They are the direct process, the two-phonon Raman process and the two-phonon Orbach
process.

5 Quantization of the EM-field (quantum electrodynamics) provides a solution termed vacuum fluctua-
tions. Such fluctuations are expected today to act as the ’trigger’ for spontaneous emission

6 This is also one of the reasons why it is quite difficult to build e.g. x-ray or gamma lasers. The lifetime
of such upper states is too short to be ’triggered’ via stimulated emission.
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Then, τ1 is given as

1

τ1
= A coth

(
~ω

2kB T

)
+ BTn +

C
exp(∆/kBT )− 1

, (3.29)

using n = 7 for a non-Kramers doublet, n = 9 for Kramer doublet and ∆ being the energy
difference between a two level system and a third energy level in the Orbach process
[AB70]. The Orbach process is a kind of direct process, where a phonon of energy ~ω1 is
absorbed from the first excited state of a two level system to a higher one. Emission from
this state to the ground state happens with energy ~ω2. The direct process would mean,
that a phonon of energy difference ~ω is absorbed and emitted according to the energy
difference of the two level system. The Raman process is similar to the Orbach process,
just with the difference that no direct processes are involved, but implies virtual states or
energy levels.

However, from equation 3.29 it is clear, that contributions to the spin-lattice relaxation
time due to Raman (B) or Orbach (C) processes depend mainly on the temperature T .
Therefore, if the temperature is rather low (e.g. < 1 K), both mentioned terms are rather
neglected.

Finally, A is determined to be just BU {exp(~ω/kBT )− 1}, where B has to be determined
in order to calculate τ1. One approach to do so, is for example to evaluate the transition
probability W:

Wfi =
2π

~2
ε2
∣∣∣〈i ∣∣∣V(1)

∣∣∣ f〉∣∣∣2 f(ω) . (3.30)

The complete Hamiltonian would beH = HZee+V, with V = V (0)+εV (1)+ε2V (2)+... as the
crystalline electric potential in powers of the strain [AB70]. We assume that the transition
Wfi is caused mainly by the lattice vibrations described by εV (1) (neglecting higher terms),
where V (0) represents the static potential term. HZee and the static potential should not
have an strong influence and are thus not mentioned in equation 3.30. Furthermore, the
strain could be considered as 2ρv2ε2 = Udω, with ρ as the crystal density [AB70]. The
line shape function f(w) integrated over dω is usually taken to be 1. The transition
probability of stimulated emission is W = B U (neglecting spontaneous emission), where

B is determined as ≈ (π/~2ρv2) ·
∣∣V (1)

∣∣2 [AB70]. Hence, in case of a Kramers doublet,

V (1) is further approximated by (~ω/∆c)V
(1), with ∆c as the crystal field splitting [AB70].

The final equation is given as:

τ1 ≈
(

2π

3~

)(
∆2
cρv

5∣∣V (1)
∣∣2
)(

1

ω5coth (~ω/2kBT )

)
. (3.31)

The second part in brackets of the right hand side of equation 3.31 are the parameters
given by the crystal, where the first part are just constants. The last bracket is indicating
the influences from outside as the angular frequency ω and temperature T . If a Kramers
doublet is present, τ1 is enhanced by e.g. the crystal field splitting ∆2

c . Moreover, τ1 is
further enhanced by factors like v and ρ, which could be explained physically by lower
lattice vibrations for higher sound velocities. In such a case the lattice is following rather
less the motions of a driving force due to the inertia of e.g. bigger ion masses (ρ =
mass/vol.). Usually v and ρ are connected with each other, meaning that the velocity of
sound depends also on the density ρ. However, by increasing the density also other effects
like spin-spin interactions are of course enhanced, which is maybe impeded by dilution of
the paramagnetic ion in the host material.
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3.2. Erbium (Er3+) Doped Crystals 23

There are several ways to measure τ1, e.g. by the techniques of spin-echo, line broadening
or continuous saturation. However, the most widely used and very effective method is
that of the pulse saturation recovery. The transition under investigation is saturated by
a pulse of microwave power at the resonance frequency, where the subsequent return to
equilibrium is observed by monitoring the population difference with a lower power source
close to the main frequency [Ort68]. It is sufficient to fit standard exponential curves to
the measured signal in order to determine τ1.

3.2. Erbium (Er3+) Doped Crystals

Rare-earth (RE) metals doped or implanted into inorganic solid state hosts or crystals
have been studied for more than half a century. Particularly due to interest for solid state
lasers, fiber optics amplifiers, laser stabilization for programmable frequency standards
and radio frequency analyzers. Usual investigations are focused on thulium, europium,
neodymium and erbium, typically in Y2SiO5 or LiNbO3 [TAC+10].

In this thesis the main focus of interest lies on erbium doped crystals, where Y2SiO5 (YSO)
is used as host material.

Already today much spectroscopic investigation was done on temperatures typically at
6-10 K for erbium doped YSO hosts [GNBG+06], [SBTC08]. Our interest lies more on the
ability to study such doped crystals for hybrid quantum system (HQS) applications.

Furthermore, also a second host material YAlO3 (YAlO) is used, where rather few inves-
tigations have been done by the scientific world on low temperatures ESR spectroscopy.
This sections are going to give just a short introduction on the REs, especially erbium and
its environment, the host materials YSO and YAlO.

3.2.1. The Lanthanide (4f) Group and Erbium (Er3+)

The lanthanide group or the rare earths have the significant feature of filling the 4fn shell
successively by n (n ≥ 0 & n ≤ 14) unpaired electrons in case of a tripositive ion, where
the filling of the 4f shell is different for dipositive and quadripositive ions or natural atoms.

In case of Lanthanum, for example, the electron is rather occupying the 5d shell instead of
4f. The closed or completely filled orbitals correspond to the Xenon core, where the closed
shells 5s25p6 shield the 4f electrons from its environment. Furthermore, such unpaired
electrons are of course necessary for ESR or any kind of spin experiments.

For the sake of clarity, all tripositive lanthanide ions with its atomic number Z, the 4fn

configuration, the ground state, its number of the odd isotopes and the corresponding
nuclear spin I are summarized in table 3.1 on the next page.

Focusing now in more detail onto the tripositive ion of erbium (Er3+), table 3.1 shows that
erbium has eleven electrons in the 4f shell, which we can treat as a Kramers ion.

Furthermore, the ground state 2S+1LJ has the values 4I15/2, leading to L = 6 and S = 3/2.

As mentioned before, dealing with a Kramers ion, the degeneracy is split due to a crystal
field in J = 15/2+1/2 = 8 doublets, where for the lowest doublet an effective spin S′ = 1/2
at low temperatures can be assumed.
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Z Name Symbol 4f Config. Grd. State Isotope SpinNuclear (I)

57 Lanthanum La3+ 4f0 — — —

58 Cerium Ce3+ 4f1 2F5/2 — —

59 Praseodymium Pr3+ 4f2 3H4 141 5/2

60 Neodymium Nd3+ 4f3 4I9/2 143 | 145 7/2 | 7/2

61 Promethium Pm3+ 4f4 5I4 147 7/2

62 Samarium Sm3+ 4f5 6H5/2 147 | 149 7/2 | 7/2

63 Europium Eu3+ 4f6 7F0 — —

64 Gadolinium Gd3+ 4f7 8S7/2 — —

65 Terbium Tb3+ 4f8 7F6 159 3/2

66 Dysprosium Dy3+ 4f9 6H15/2 161 | 163 5/2 | 5/2

67 Holmium Ho3+ 4f10 5I8 165 7/2

68 Erbium Er3+ 4f11 4I15/2 167 7/2

69 Thulium Tm3+ 4f12 3H6 169 1/2

70 Ytterbium Yb3+ 4f13 2F7/2 171 | 173 1/2 | 5/2

71 Lutetium Lu3+ 4f14 — — —

Table 3.1.: The lanthanide or rare earths with atomic number Z, full name, chemical symbol,
the 4f shell configuration, the ground state, the odd numbered isotopes with the
nuclear spin I. Data taken from [AB70]

With 4I15/2 for the erbium ion in the ground state, the first excited state is 4I13/2. The
separation between both states is ≈ 6500 cm−1 [AB70], which corresponds to ≈ 1538 nm
and lies in the Telecom C-band. Also seen from table 3.1 is the odd valued isotope 167Er
with a nuclear spin of I = 7/2. In addition, erbium has five even isotopes 162Er, 164Er,
166Er, 168Er and 170Er, possessing a nuclear spin I = 0 and a natural abundance of 77.05 %.
The natural abundance of the single odd valued isotope is typically 22.95 % [GNBG+06].
Such odd valued isotopes lead to hyperfine splittings, as discussed in section 3.1.2. In some
systems the f electrons sometimes interact with nuclei of surrounding ligands, leading to
the so called super-hyperfine or transferred hyperfine interaction, but can differ quite
dramatically from one system to another ([TAC+10] see e.g. reference R.M. Macfarlane).

However, the super-hyperfine interaction will not be discussed in this thesis, where the
interested reader is rather forwarded to last mentioned reference.

3.2.2. Erbium (Er3+) in Host Material YSO (Y2SiO5)

In erbium doped host crystals like YSO (yttrium orthosilicate, Y2SiO5), the erbium ion
substitutes typically for the Y3+ ions, occupying two distinct crystallographic sites, each
with C1 local symmetry7 .

For each site there are four subclasses of sites with different orientations [SBTC08]. The
crystal itself has the space group C6

2h with C2 as the crystal b axis and a, c perpendicular
to it being the mirror plane. The lattice constants are a = 1.041 nm, b = 0.6721 nm and
c = 1.249 nm with angle β (between a and c) having a value of 102◦39’ [SBTC08].

The previously mentioned four subclasses of sites are related by the C2 rotation and
inversion, which means, those related by inversion interact identically with a magnetic
field vector lying in the mirror plane or along the b axis, quoting magnetic equivalent.
Whereas those related by a C2 rotation are magnetically inequivalent.

7 Using in this thesis the Schönflies notation
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By convention, the crystal axes in the mirror plane are labeled according to the optical
extinction axes D1 and D2, where D1 is 23.8◦ from the c axis and 78.7◦ from the a axis,
with D1 perpendicular to D2 [SBTC08]. We will use the D1-D2-b coordinate system in this
thesis, where the azimuthal angle φ lies in the D1-D2 plane, defined counterclockwise from
D1. The polar angle θ is defined from b. The angles φ and θ are used to define the position
according to a applied magnetic field. These conditions are schematically presented in
figure 3.13:

Figure 3.13.: Yttrium orthosilicate (YSO). (a) Crystal dimensions with crystal axes a, b and c,
as used in experiment. More frequently the axes b, D1 and D2 (optical excitation
axes) are used. θ and φ describe the crystal position according to an applied
magnetic field. (b) Schematic crystalline structure of YSO. Site 1 is colored in
cyan or light blue and site 2 in dark blue. The difference between site 1 and site
2 is the number of neighboring Oxygen ions of the yttrium ion. Site 1 possesses
7 Oxygen ions, whereas site 2 has 6. Silicon is marked in yellow. Typically
the erbium ion substitutes for the yttrium ion. (c) C2h monoclinic Schönflies
representation of the crystal geometry. The lengths a, b and c are not equal and
angle β = 102◦39’ (β 6= 90◦). (b) and (c) taken from [DVA+08]

For the magnetically equivalent sites, there should be only two transitions observed for
each site regarding the ground state in ESR spectroscopy, whereas for the magnetically
inequivalent sites maximum four transitions (i.e. two per each site) are observable. In
ESR spectroscopy these transitions are observed due to the splitting of the lowest Kramers
doublet in a static magnetic field.

In principal, the ’free ion’ levels are modified by the weak crystal field, where the term
weak means a relatively low interaction or influence of the 4f electrons due to the shielding
of higher occupied shells.

In case of the odd electron number of the 4f shell, each level (here 4I15/2 and 4I13/2) is
split into eight degenerate Kramers doublets (J + 1/2), there the lowest two doublets of
the ground state 4I15/2 are separated by ≈ 33.3 cm−1 or ≈ 1 THz [BFR+11].

At low temperatures the lowest lying doublet is treated typically as effective spin S′ at
cryogenic temperatures, which split according to the applied magnetic field and due to
Kramers theorem. This splitting lies in the typical ESR region of some GHz [BFR+11],
depending on the applied external magnetic field.
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Furthermore, due to the odd valued isotope 167Er, additional hyperfine splittings occur,
splitting the effective spin energy levels into eight (I + 1/2), each with nuclear magnetic
numbers 7/2, ..., -7/2.

The previously discussed energy levels are summarized in figure 3.14:

Figure 3.14.: Energy level scheme of Er:YSO. The fine splitting energy difference lies in the
Telecom C-band region, whereas a weak crystal field splits the Kramers ion into
8 doublets for each fine splitting energy level. Furthermore, the Kramers doublet
splits in presence of a magnetic field into two levels, each with 8 hyperfine levels
if an odd valued erbium isotope is present. (See also [BFR+11])

3.2.3. Erbium (Er3+) in Host Material YAlO (YAlO3)

Yttrium orthoaluminate (YAlO) or yttrium aluminum perovskite (YAP), according to its
orthorhombically distorted perovskite structure, belongs to the D2h, Pnma space group
number 62 [BSBS09].

Using the Pnma description, the lattice parameters are given as a = 0.5330 nm, b = 0.7375
nm and c = 0.5180 nm [BSBS09], whereas describing it for the orthorhombic space group
D-Pbnm, the parameters are a = 0.5180 nm, b = 0.5330 nm and c = 0.7375 nm [ARM97].

The elementary orthorhombic cell contains four magnetic sites for Al3+ and Y3+. The
locations of the Y3+ ions are paired by an inversion through the Al3+ sites. Therefore con-
taining two magnetically non-equivalent positions which can be resolved when a magnetic
field is applied in the plane of a and b according to the D-Pbnm space group description.

In case of planes b c and a c, all positions are magnetically equivalent. Thus they are
unresolved in ESR spectroscopy [ARM97].

The nearest neighbors of Al3+ are six oxygen ions with a weakly perturbed octahedral
structure and in case of Y3+, the local environment consist out of eight oxygen ions.
Typically, the RE ions (e.g. erbium) substitute for the Y3+ ions [ARM97].

The described structure is schematically presented in figure 3.15 on the next page.
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Figure 3.15.: Yttrium orthoaluminate (YAlO). (a) Schematic crystalline structure of Er:YAlO.
Yttrium ions are colored in purple, whereas the Oxigen ions are colored light
blue. Aluminum is colored dark blue. The coordinate system is presented for
the Pnma space group description. (b) Crystal dimensions with crystal axes a, b
and c, as used in experiment. The crystal has a D2h representation according to
the Schönflies notation. Local octahedral (c) structures are formed by Aluminum
and Oxygen ions. (a) taken from [BSBS09]

In principle, the same energy level diagram as seen in in figure 3.14 can be adopted for
erbium in YAlO.

3.3. Waveguide Resonators

Resonator cavities, no matter if rectangular, cylindrical or even arbitrary shaped, are an
important part of ESR spectroscopy, e.g. as used by J. Colton and L. Wienkes [CW09].

Since decades such cavities are used as filters, frequency meters, or as powerful tools
to determine specimen properties like the permittivity [KKS+12]. Due to cavity design
possibilities, the ability of choosing or selecting certain frequency modes is given, as well
as to have a certain area or volume with distinct electric and magnetic fields. Such fields,
e.g. the magnetic field, could be found to penetrate oscillatory a certain volume of interest
in a homogeneous manner, as homogeneity is an important aspect as discussed in section
3.1.3.

This section will focus on discussions regarding cylindrically shaped waveguide cavity
resonators and its properties. Furthermore, we will discuss how such properties could
be modified in order to to reach certain criteria for ESR spectroscopy, as well as how to
extract and interpret the signals.

Discussion including other types of cavity resonators are found in [Hil09, ZL08, Col01].

In this thesis such resonators are termed ’three dimensional’ (3D), which, besides the entire
size of such an cavity, could be associated with relatively ’big’ modal volumes occupied by
the electromagnetic field as compared to e.g. lumped element resonators.
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3.3.1. Circuit Model, Q-Factors and the Observed Spectra

Before describing the cavity of a cylindrical waveguide resonator (CWR) in detail, first a
treatment in case of simplified lumped elements is given. Such description of the operation
of a microwave resonator is very similar to that used in circuit theory.

In this section we will treat the case of series and parallel resonant circuits, where the case of
being close to the resonance frequency is used in order to be able to use the RLC (Resistor,
Inductor and Capacitor, respectively) model of equivalent lumped element circuits [Poz11].

The circuit representation of a series (a) and parallel (b) RLC resonator is depicted in
figure 3.16, also showing the response of such a circuit as the input impedance versus
angular frequency, (b) and (d) respectively:

Figure 3.16.: (a) Circuit representation of a lumped element series RLC (Resistor, Inductor
and Capacitor). L and C describe the resonance frequency according to ω =
LC−1/2, whereas R represents the resonator losses. (b) Response graph of a series
RLC resonator in terms of the impedance Z and angular frequency ω. Only at
resonance (ω = ω0) the impedance is mainly determined by the resistance R.
Otherwise for ω 6= ω0 the impedance is increasing. (c) Circuit representation of
a parallel RLC resonator with lumped elements. (d) Response graph of a parallel
RLC resonator. Nearly the same situation like in (b), except that for ω 6= ω0

the impedance is decreasing. Figures taken from [Poz11]

As it is seen from figure 3.16 (d), for a parallel resonant circuit at resonance (ω = ω0)
the magnitude of the input impedance (|Zin|) of the system equals just R (real value), i.e.
the supplied power is completely dissipated at an equivalent resistor (accounting for power
loss) if the impedance of the power supply port is matched.

Same applies for the series resonant circuit [figure 3.16 (b)], except that for frequency
detuning (∆ω = ω − ω0) the input impedance is rising, where in the parallel case the
magnitude of |Zin| is dropping. Therefore the series RLC is the dual impedance of the
parallel RLC.

However, in both cases the resonance frequency ω0 is determined by the values of the
inductance (L) and capacitance (C) part, given as [Poz11]

ω0 =
1√
LC

. (3.32)
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In a picture of a propagating electromagnetic (EM) wave with certain impedance, e.g. in
case of the parallel circuit, such a wave will propagate without reflections [r = (ZWave −
Zin)/(ZWave + Zin)] if both impedance values are equal (r = 0). For a dropping |Zin|
[figure 3.16 (d)] the incoming wave is rather reflected than transmitted. Thus, only in case
of resonance a signal is detected in transmission, which can be seen as a bandpass filter
only transmitting signals in the region around ω0.

Another way to picture this behavior is presented figure 3.17:

Figure 3.17.: Parallel RLC representation of a resonator modeled via lumped elements. The
coupling is indicated by Lc (inductive) to a external circuity, being here the
coaxial cables. Furthermore, capacitive coupling is also possible, just replacing
the elements Lc by Cc.

Figure 3.17 is again the parallel case, but now connected to coaxial cables. Two additional
inductors (Lc) just represent an inductive coupling to the circuit. Ways to couple to a
resonator will be explained in section 3.3.3 in more detail and should not be taken into
account for now.

Remembering the impedance behavior of the parallel circuit, for transmitting signals from
one transmission line to the other, apart from resonance, the incoming signal will take the
’short’ way via the RLC circuit to ground. Only in the vicinity of resonance a signal will
be transmitted, as previously described in case of the EM wave. For a series RLC the
impedance behavior is vice versa and therefore only at resonance the signal will take the
short to the ground, indicated by a inverted transmission signal compared to the parallel
RLC case. Typically such signals are measured in power ratios of decibels (dBm), where
the measured power reference is 1 milliwatt (mW). The graphs are usually presented in
dB versus frequency, where the applied power in watts should be known. If for example
applying 1 mW, this refers to 0 dBm, calculated via

XdBm = 10 log10
P

Pref
. (3.33)

P is the applied power in milliwatts and Pref is the reference power of 1 mW. Hence, if
observing a certain dB value at resonance, say -3 dBm in case of a parallel circuit, 1 dBm
(1 mW) is applied and only ≈ 0.5 mW are transmitted.

This value can be calculated by reformulating equation 3.33 for P . In terms of applied
voltage this leads to a drop of 1/

√
2 or ≈ 0.707, as also shown in figure 3.16. Frequency

values found on this curve at values -3 dB from the peak value of the curve (resonance
frequency) are referred as the bandwidth. For a frequency detuning of ∆ω = ω−ω0, |∆ω|
is defined as the half width at half maximum (HWHM) bandwidth, whereas 2 · |∆ω| is the
full width at half maximum (FWHM). Recent discussion is graphically presented in figure
3.18 for more clarity on the next page.
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Figure 3.18.: Lorentzian shaped transmission signal in Decibel (dB) versus angular frequency
ω. The resonance frequency is indicated by ω0 and the bandwidth ∆ω is de-
termined at -3dB (at half values of the maximum). Such a bandwidth can be
defined at half of full width values, typically abbreviated HWHM (Half Width
at Half Maximum) and FWHM (Full Width at Half Maximum).

Another very important parameter using the values of the resonance frequency and band-
width is the so called dimensionless quality factor Q. This parameter specifies the frequency
selectivity and performance of a resonant circuit in general [Col01]. The very fundamental
definition of the Q-factor is:

Q = ω0
time averaged energy stored in a system

energy loss of the system per period
, (3.34)

or just in terms of the angular frequency ω:

Q =
ω0

∆ω
. (3.35)

At resonance, the lumped element R represents the losses of the circuit. In this case,
usually the quality factor Q is called the unloaded or internal quality factor Qi.

If other losses are present, e.g. due to external circuits coupled to the main circuity,
typically this is called the external quality factor Qe. If determining the quality factor
from a transmission signal, the measured Q-factor is often the sum of several reciprocal
Q-factors, leading typically to the loaded quality factor

1

QL
=

1

Qi
+

1

Qe
+

1

Qx
, (3.36)

where Qx could be any kind of additional loss contribution.
Furthermore, the unloaded or intrinsic Q-factor of a cylindrical cavity resonator is de-
scribed as

1

Qi
=

1

Qc
+

1

Qd
, (3.37)
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where Qc represents the quality factor influenced by the material conductivity from which
the cavity is made of. Qd describes the quality factor influenced by dielectric material
losses, if present in the cavity [Poz11]. The dielectric quality factor is Qd = 1/tanδ, with
tanδ as the dielectric loss tangent.

In turn, the expression for the quality factor according to the conductivity contains more
terms and constants and is described by Collin [Col01] for TEnml modes as

Qc
δ

λ
=

[
1− ( n

p′nm
)2
]

3

√
(p′nm)2 + ( lπad )2

2π
[
(p′nm)2 + 2a

d ( lπad )2 + (1− 2a
d )( nlπap′nmd

)2
] (TE) . (3.38)

Here, n and l are the corresponding integer mode numbers, where p′nm is the mth root of
the first derivative of the mth Bessel function [Poz11]. Furthermore, a is the radius and d
the length of the cavity.

Moreover, the skin depth is represented by δ, where λ is the wavelength. All parameters
are summarized in the following equation:

δ =
1√

2πfµσ/2
. (3.39)

Equation 3.39 contains the material dependent properties of the cavity as the permeability
µ and the conductivity σ, where λ is the wavelength. Finally the quality factor for a certain
mode is obtained in dependence of its frequency given by the geometry of the cavity and
the material dependent values.
In order to calculate the quality factors for the TMnml modes, the following equation has
to be used [Col01]:

Qc
δ

λ
=

√
p2
nm + (lπa/d)2

2π(1 + 2a/d)
for l > 0 (TM)

Qc
δ

λ
=

pnm
2π(1 + a/d)

for l = 0 (TM) .

(3.40)

At cryogenic temperatures the value of the conductivity σ changes, as its reciprocal value
ρ (specific resistance) decreases due to less thermal interactions of the charge carriers with
the crystalline lattice. One way to determine the new value of σ at cryogenic temperatures
is the Widemann-Franz-Law, applicable from 4 to 300 Kelvin [Pob07].

An increasing conductivity will lead to a higher Qc value, as the overall value in the square
root of the skin depth δ increases, which is seen from equations 3.38 and 3.39 or 3.40.

According to equation 3.37 the internal quality factor Qi and proportional to it the loaded
quality QL should rise.
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In order to complete the discussion of this section, two ways of the observed spectra will
be presented:

Figure 3.19.: (a) Transmission signals with a Lorentzian (red) or Gaussian (black) line shape.
In this thesis usually Lorentzian shaped signals are observed. (b) First derivative
of the Lorentzian line shape. Such a signal is e.g. observed on frequency changes
of the main resonance frequency, indicating dispersion.

Figure 3.19 (a) shows the already know transmission signal. Depending on the physics
acting inside a resonator, the observed signal could obtain a Lorentzian or Gaussian shape,
represented respectively by its mathematical functions. Even sometimes convolutions of
both kinds are possible, denoted as Voigt shaped [Eic13].

Assuming the signal being indicated by the Q-factor of the resonator, on magnetic reso-
nance there will be also a contribution of Qx. Thus, if a magnetic field is applied to the
resonator, for zero field the value of 1/Qx in equation 3.36 could be neglected. But contri-
butions are found maybe for a certain field strength > zero when in magnetic resonance.

Therefore, for the mentioned resonance case QL has to change as the value of ∆ω changes,
indicating absorption. But also a change in frequency is possible, denoted as dispersion.
If now the detected signal is plotted versus the magnetic field, both, the absorption and
dispersion is detectable. Thus, figure 3.19 (b) will be obtained, which is in mathematical
terms the first derivative of (a).

Such a correlation is typically found for the susceptibility χ, which describes the response
of a material to an applied external field, e.g. derived by the Drude-Lorenz model if
describing χ in terms of real and imaginary parts. In this case, the real part is typically
observed as shown in figure 3.19 (a), describing the absorptive part of the material, whereas
the imaginary part is observed as shown in figure 3.19 (b), describing the dispersion. Both
parts could be interchanged by the Kramers-Kronig relation [Boy08].
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3.3.2. Resonant Frequencies and the TE011 Mode

Resonant frequencies in a waveguide resonator are achieved by introducing bottom and
upper caps to the waveguide. In this case the propagating electromagnetic (EM) waves
are reflected at such reflecting barriers, leading to certain standing waves determined by
the dimensions. From considerations like found for laser resonators or the Fabry-Pérot-
Interferometer, a longitudinal mode is determined by d = λ/2, where d is the distance
between two reflecting barriers aligned parallel to each other and λ is the wavelength. In
order to get a resonating longitudinal mode in the single valued GHz range, from λ = c/f
and using f = 7 GHz, λ equals approximately 4.28 cm. To get this wavelength resonating
between to reflectors, its separation should therefore equal half of the wavelength or 2.14
cm.

In a waveguide resonator not only longitudinal modes are present, but also transverse
modes, typically termed transverse electric (TE) or transverse magnetic (TM) modes,
where transverse means transverse to the axis of EM wave propagation. In case of TE
modes, the electric field component in the direction of propagation is zero, but which
does not count for the magnetic field component (longitudinal component). The situation
is reversed for TM modes. However, the waveguide, which is here a cylinder, is also
determined by a radial dimension a, like depicted in figure 3.20:

Figure 3.20.: Waveguide with end caps, forming a cylinder. Dimensions are described by a
(radius) and d (length). φ describes the azimuthal angle.

The resonant TE modes in terms of frequency for cylindrical cavities are thus determined
by

fnml =
c

2π
√
µrεr

√(
p′nm
a

)2

+

(
lπ

d

)2

, (3.41)

where µr and εr (permeability and permittivity) describe the material properties inside
the cylinder and p′nm is the mth root of the nth Bessel function [Poz11]. For TE modes,
the first derivative of the Bessel function is used, indicated by p′, whereas for TM modes
also equation 3.41 applies, only replacing the first derivative of the Bessel function (p′nm)
by its anti-derivative pnm. As mentioned, the subscript letters n and m are represented
by the Bessel function, whereas the final letter l indicates the number of half wavelengths
resonating in the direction of propagation, which typically is set to the z-axis.
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Some modal field distributions according to cylindrical waveguide resonators are presented
in figure 3.21:

Figure 3.21.: Possible field distribution in a cylindrical cavity. The circles on the left hand
side indicated by TE01 and TM01 are the top or bottom view of the cylinder
(xy-plane). The rectangular shapes show the lateral view. Here x describes the
field pointing into the paper plane and a dot indicates the field pointing out of
the paper plane.

Figure 3.21 (a) shows that the TE011 mode has as special property. The magnetic field
component B of the EM field is penetrating the center of the cylinder, where at the exact
central point the magnetic field lines are parallel, i.e. homogenous (high concentration
of magnetic field lines). Such a homogenous B-field is practicable in order to keep the
inhomogeneous broadening of the spin ensemble low and to observe therefore a relatively
small linewidth.

Usually, ESR experimentalists use this mode as there is no electric current flow into the
radial (a), nor the longitudinal direction (z), but only in the azimuthal (φ) direction. This
allows the usage of a tuning plunger on one of the end plates for frequency variations
[Poo67].

Another advantage of such a current flow is the ability to make holes in the side of the
cavity for e.g. optical access [CW09], or to couple external circuity to the resonator, as it
is used in this thesis.

Additional and more detailed modal field distributions regarding waveguide resonators are
also found in [ZL08, Poz11], or in general for rectangular and circular waveguides C. S.
Lee et al. [LLC85] is recommended.
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For example, if using an air8 filled copper cavity (σ = 5.96 · 107 S/m at 20◦ C [Poz11]) of
dimensions a = 0.01 m and d = 0.0205 m, from equations 3.41, 3.38 and 3.40, subsequent
values of table 3.2 are calculated.

Transverse Electric (TE) Transverse Magnetic (TM)

Freq. [GHz] Mode [nml] Qc (Qi) Freq. [GHz] Mode [nml] Qc (Qi)

11.457 1 1 1 11636.08 11.475 0 1 0 11051.87

16.304 2 1 1 11225.06 13.607 0 1 1 9063.03

17.060 1 1 2 14313.88 18.284 1 1 0 13950.40

19.692 0 1 1 21612.41 18.589 0 1 2 10593.07

— — — 19.692 1 1 1 10902.83

Table 3.2.: First few TE/TM resonant frequency modes and its Q-factors for an air (or vacuum)
filled cylindrical cavity with dimensions a = 0.01 m and d = 0.0205 m, up to a
frequency of 20 GHz.

The values in table 3.2 have been calculated by using further values as ε0 = 8.854 · 10−12

Am/Vs, µ0 = 4π · 10−7 Vs/Am [Poz11], and the permeability of copper (µr ≈ 1) for the
skin depth formula. Furthermore, the calculations show that the lowest TE mode is found
at 11.457 GHz with mode numbers 111. The lowest TM mode is also found at 11.457 GHz
and is thus degenerate in frequency with the TE111 mode. The difference between the
modes is found for the intrinsic quality factors, which is higher for the TE111 mode. The
desired TE011 mode is found at 19.692 GHz. In order to have the TE011 mode resonating
at lower frequencies, the usage of a high valued dielectric material with permittivity εr
is recommended. Subsequent figure demonstrates the effect of different valued dielectrics
scaling the radius a of a cylindrical cavity for frequency values between 1 and 20 GHz:

Frequency [GHz]

R
ad

iu
s 

[c
m

]

(Air)
(Teflon)
(Sapphire)

Figure 3.22.: Illustration of some dielectric materials with permittivity εr influencing the res-
onant frequency of a certain mode with respect to the radius (here: logarithmic
scaled) of a cylindrical cavity. In order to fix a mode at a certain frequency, val-
ues of the radius could be adjusted, whereas it is recommended to use a dielectric
inside the cavity to scale down the resonant frequencies further.

Figure 3.22 clearly shows that for an air filled cavity the radius is increasing with decreasing
resonance frequency. This effectively leads to an overall increase of the cavity volume. As

8 εr = 1 and 1/Qd = 0
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it will be discussed in section 3.4, the volume of the cavity should be as small as possible.
Therefore sapphire9 as a high valued dielectric material with a loss tangent of ≈ 1 · 10−7

[TF85] is used to scale down the resonant frequencies of the waveguide resonators, as used
in this thesis.

3.3.3. Two-Port Networks and External Coupling

Direct measurements of voltages and currents at microwave frequencies usually involve
the magnitude and phase of a traveling or standing wave. Thus, equivalent voltages and
currents become somewhat of an abstraction when dealing with high-frequency networks.
A representation more in accord with direct measurements, and with the ideas of incident,
reflected, and transmitted waves, is given by the scattering matrix. The scattering matrix
provides a complete description of the network, where the parameters can be measured
directly with a vector network analyzer (VNA). Once the scattering parameters of the
network are known, conversion to other matrix parameters can be performed, if needed
[Poz11].
A typical scattering matrix for a two port system is given as follows:

[
V −1
V −2

]
=

[
S11 S12

S21 S22

] [
V +

1

V +
2

]
, (3.42)

where the physical meaning of S11 is the reflection on port 1 and S22 is the reflection at
port 2. S12 is the transmission from port 1 to 2 and S21 is the transmission from port 2
to 1. V+

1 and V+
2 are the amplitudes of the incident voltage waves, and V−1 and V−2 are

the amplitudes of the reflected voltage waves, as depicted in figure 3.23 using a1, a2 and
b1, b2, respectively.

Figure 3.23.: (a) Schematic representation of the scattering matrix S (two port network), with
incoming waves a1, a2 and reflected waves b1, b2 at ports 1 and 2. (b) Signal
flow graph, in analogy to (a). S11 for example is measured between node a1 and
b1, i.e. incident and reflected waves. Figures taken from [Poz11].

9 Sapphire has anisotropic εr values, typically denoted by a value of≈ 11.6 parallel and≈ 9.4 perpendicular
to the crystal axis (room temperature) [TF85]
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Using scattering matrices, a complete description of the network is possible. However,
for measuring or evaluating the resonant frequencies and quality factors, the transmission
parameter S21 is sufficient and will be used usually in this thesis.

In order to provide microwave energy to the resonator, external couplers like probes,
loops or apertures [Col01] are frequently used (figure 3.24). In case of probes or loops
usually coaxial cables are used. In case of aperture coupling, EM waves are delivered via
waveguides, which are themselves again probe or loop coupled.

Figure 3.24.: External coupling to cavity. (a) Probe coupled cavity. The probes, or pins could
be assumed to act like antennas. Such a variant is more sensitive to the E-field.
(b) Loop coupled cavity, where in this case the end of the wire is grounded to
the cavity wall. The flux of a B-field through the area spanned by the loops will
determine the sensitivity or coupling, which is usually more sensitive to B-fields.
(c) Aperture coupled cavity, where the size and shape of the aperture determines
the coupling to the cavity.

Coupling to the magnetic field is enhanced by using loops, as the area confined by such a
loop determines the induced currents in the loop wire, or vice versa. Increasing this area
will lead to a higher coupling to the cavity or resonator, as a higher flux of the magnetic
field is collected. In such a case the cavity is said to be inductively coupled, as depicted
in figure 3.17 by LC in section 3.3.1. In order to couple effectively to the magnetic field of
a TE011 mode, coupling loops should be used, as it will be the case for this thesis.

Any of the previously described coupling cases will have influences onto the measured or
loaded quality factor, which is determined by the external Q-factor. Thus, from equation
3.36 is is known that the reciprocal loaded quality factor is the sum of the reciprocal
intrinsic and external quality factors, neglecting here 1/Qx. In order to determine the
external quality factor, the intrinsic quality factor should be known. An approach to
determine the intrinsic Q-factor is given by D. Kajfez et al. [KCAGK99] as

Qi = QL(1 + 2κ) . (3.43)

In equation 3.43, κ is the coupling coefficient. If the coupling is on both sides the same, κ
is multiplied by 2.

Furthermore, 2κ is determined by |S21e| /(1−|S21e|), where |S21e| is the real valued magni-
tude at resonance. This only holds if influences like noise, crosstalk, delay of uncalibrated
lines etc. could be neglected or are known. In case of different coupling coefficients on
both sides, rather the procedure explained by K. Leong and J. Mazierska [LM02] should
be used.

As the transmission lines in a cryostat are attenuated at different temperature stages,
measurements of e.g. S11 at cryogenic temperatures would need amplifiers on the way
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back to port 1, as the signal would be damped by the attenuators again. Such an amplifier
was not used for the measurements of this thesis and thus only the S21 data was measured
for κ > 1. In order to still determine the internal quality factors without using S11 data,
the subsequent described procedure is used.

In case of a under-coupled cavity, i.e. κ � 1, the loaded Q-factor equals approximately
the intrinsic Q-factor like also deducible from equation 3.43. From measurements of QL

at room temperature and cryogenic temperatures with an under-coupled cavity, a factor
fQi could be determined. This factor is the ratio of Qi/QL and describes just the Q-
factor increase at low temperatures. The external quality factor Qe is determined at room
temperature for an over-coupled cavity and does not change at cryogenic temperatures.
Using this set of values, the internal Q-factor for an over-coupled cavity at low temperatures
can be written as:

1

Qi,ct
=

(
1

QL,ct
− 1

Qe,rt

)
(fQi)

−1 . (3.44)

In this equation QL,ct is the loaded quality factor at cryogenic temperatures (ct) and Qe,rt

is the external quality factor determined at room temperature (rt).

3.4. Cavity Quantum Electrodynamics

Cavity quantum electrodynamics (cavity QED) studies the interaction of light and matter
at the quantum level. A metaphorical description is just the presence of a atom with two
quantum levels, coupled to a single electromagnetic mode of a cavity. If the cavity consists
out of two mirrors, the photon bounces between both, indicated by a single longitudinal
mode. Placing now a two level atom, or in general, a two level system (TLS) into this
path, this leads to a resonance effect of absorption and emission. In such a case the photon
energy has to match the energy difference of the TLS. Typically this rate of interaction is
characterized by the letter g in literature (see e.g. [Fox06]) or in articles (e.g. [SG08]).

Figure 3.25.: A cavity constructed out of two mirrors (gray), separated by a certain distance.
Due to the mirrors, photons (light red) are able to bounce back and forth. A
typical photon loss mechanism is e.g. the absorption at the cavity walls or trans-
mission out of the cavity, described by cavity loss rate κ. If a two level system is
present in the cavity, the photon is absorbed and re-emitted at rates represented
by gcoup. If the re-emission happens into other, non-resonant modes, this leads
to further losses described at rates of γ.

In order to avoid confusion with the g-factor (g) as used in previous sections, for this thesis
the subscript coup is used. This factor denotes the coupling rate between the photon
and atom. More generally, gcoup is the vacuum Rabi frequency [SG08] or the coupling
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constant in the Jaynes-Cummings model [WM08]. Initially, the Rabi model considers the
resonant interaction between an atom and a classical field of high intensity, while the
Jaynes-Cummings model considers the same phenomenon for quantized light fields with
small photon numbers [Fox06].

Besides this interaction or coupling rate, undesired loss processes are also present. For
example, the lifetime of the photon in the cavity is determined by the rate κ, whereas
the emission of the photon into other, non TLS resonant modes happens at the rate γ. If
such processes are at rates higher than the light-atom coupling rate (gcoup � (κ, γ)), this
indicates the regime of weak coupling. For gcoup � (κ, γ) the regime of strong coupling is
reached. Usually the regime of strong coupling is preferred, as several cycles of absorption
and emission exist before the photon is lost, as needed for reversible exchanged of quantum
information [SG08]. The presence of a resonator cavity enhances the probability of coherent
oscillations as needed for such reversible processes, whereas spontaneous emission is usually
an irreversible process. In a measuring experiment, strong coupling is indicated by the
frequency splitting of the main resonance mode as schematically depicted in figure 3.26:

Figure 3.26.: Transmission spectra of a unperturbed or uncoupled resonator (red, dashed). In
case of a perturbation indicated as e.g. a coupling of a cavity and a TLS, two
resonances (red, solid spectra) are observed (mode splitting). (a) Two masses
coupled by a spring would also show a kind of mode splitting (analog example).
(b) Jaynes-Cummings representation of a coupled system. The coupling between
the atom and a photon or photons leads to the so called dressed states with
separation ∆En∗. (b) taken from [Fox06].

A full quantum mechanical treatment of such a splitting is that of Jaynes and Cummings,
using a single quantized mode of radiation field. A bare state of an uncoupled resonant
system is considered with the atom in the ground state and no photon in the cavity. This
state has an energy of (1/2)~ω due to the zero-point energy of the vacuum field. The
first excited state is at energy (3/2)~ω and corresponds to the states with either the atom
in the excited state and no photon in the cavity, or the atom in the ground state and a
photon present in the cavity [Fox06]. In the interaction picture the degeneracy is spitted
(vacuum Rabi splitting) by 2

√
n~gcoup (n = number of photons), now described as dressed

states [WM08] (inset (b) of figure 3.26). Due to this splitting two transitions are allowed.
Thus, two resonances are observed in the spectrum. An explanation could also be given
by the properties of two coupled classical oscillators as depicted in inset (a) of figure 3.26.
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As the energy difference of the splitting according to the Jaynes-Cummings model is given
by ∆E = ~gcoup, this equals gµBB (using 3.8). Treating here the interaction with the
vacuum magnetic field Bvac, this gives:

2 ·
∫

1

2µ0
B2
vac dV =

1

2
~ω , (3.45)

where the energy density of the magnetic field with µ0 as the permeability and two times
the polarization is integrated over a volume10 V. Finally, this is equivalent to the zero
point energy. From this equation, Bvac is found to be (µ0~ω/2V )1/2. Now, gcoup is found
to be

gcoup =
gµB
~

√
µ0~ω
2V

. (3.46)

Thus, the coupling rate is enhanced by high values of the g-factor, angular frequency ω
and small volumes V . More frequently equation 3.46 is given as

gcoup =

√
|~ε · ~µ0|2 ω

2~ε0V
, (3.47)

with ~ε as the polarization vector, ~µ0 as the transition dipole moment and ε0 as the per-
mittivity [Kim08]. Instead of using a transition dipole moment in equation 3.46, the
representation of equation 3.8 (gµBB) was used (see section 3.1.1 for more details). The
polarization was set to 2, i.e. the two independent polarizations of the field.

From equation 3.47 it is seen, that the coupling is enhanced by high values of the dipole
moment. Electric dipole moments lie typically in the range of atom, molecule or even on
Rydberg atom sizes, whereas magnetic moments are typically in the range of the Bohr mag-
neton µB for the electron spin. For the nuclear spin this is even some order of magnitudes
lower.

Relatively small volumes V are typically achieved in circuit QED, where for example one-
dimensional transmission line resonators, or lumped-element resonators are used. Circuit
QED is typically associated with microwave photons coupling to superconducting quantum
bits or qubits, which act like artificial atoms. Such a qubit (isolated Josephson junction)
is typically placed near an antinode of a voltage standing wave and thus coupling to the
electric field of e.g. a transmission line. An excitation corresponds to the tunneling of a
bound electron pair (Cooper pairs) through the junction, which is comparable to a very
large dipole moment (four orders of magnitude greater than that of an electronic transition
of a real atom) [SG08].

As such structures can be made using ordinary microelectronic fabrication techniques as
already widely used in today’s fabrication, this opens new possibilities in engineering small
cavity volumes and large dipole moments in order to easily achieve the strong coupling
regime.

Besides small volumes and large dipole moments, the coupling can be also enhanced by
the number of atoms N [WM08]. In such a case, equation 3.46 and 3.47 are multiplied
by
√
N . This is observed due to the collective behavior of a system of N two-level atoms,

which couple to a single mode of the electromagnetic field in a resonator [VMRT03].

10 Usually the cavity mode volume is used as V =
∫
sin |U(r)|2 d3r, with U(r) beeing the cavity standing

wave mode function [WM08]
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Such a description is given by the Tavis-Cummings-Hamiltonian [SRA+12]:

HTC = ωa†a+
1

2

N∑
j=1

ωjσ
z
j +

N∑
j=1

(
gjσ

+
j a+ H.c.

)
, (3.48)

where ω is the angular frequency of the electromagnetic field, ωj is the level splitting of
individual two-level atoms, σ’s are the Pauli matrices and a,a† are the annihilation and
creation operators of the field, using ~ = 1.

The first two terms describe the unperturbed energies of the cavity, where the third term
describes the coupling to the cavity with individual strengths gj . The ensemble couples

to a mode with the collective coupling strength Ω =
√∑N

j=1 |gj |2, which for identical gj

gives Ω = gcoup
√
N [SRA+12].

We will complete this section with an estimation of gcoup according to a waveguide res-
onator filled with a Er:YSO crystal, where our cavity has a diameter of 30 mm and a
height of ≈ 20 mm, resulting in a volume of V = 1.435 · 10−5 m3. The crystal possesses
dimension as found in figure 3.13. The density of the Er:YSO crystal is 4.44 g cm−3

(www.scientificmaterials.com), for which the calculated number of spins is N ≈ 2.46 ·1016,
if using a dilution of 50 ppm erbium. For the coupling of a single spin we used equation
3.46 as:

gcoup =
gµB
~0

√
~ω

2V ε0
. (3.49)

Using values of c0 = 3 · 108 m/s as the speed of light in vacuum and the permittivity
ε0 = 8.854 · 10−12 F/m, this results in gcoup ≈ 10 mHz. Further we assumed for the
frequency f ≈ 5.5 GHz (ω = 2πf) and used the g-factor as g = 2.

The situation changes if multiplying equation 3.49 with
√
N , where furthermore we assume

a large g-factor in Er:YSO as g ≈ 14. In such a case the coupling strength changes to
gcoup ≈ 12 MHz. This example shows that if using already a 50 ppm doped erbium crystal,
the coupling strengths is enhanced by approximately 8 orders of magnitude. Additionally,
if using e.g. a 200 ppm crystal, the coupling strength amounts to ≈ 24 MHz.
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4. Characterization and Measurement of
Er:YSO filled Waveguide Resonators

4.1. Experimental Setup

This section will shortly introduce the experimental ESR spectroscopy setup. For the
measurements as presented in this thesis, we used a vector network analyzer (VNA) from
Agilent (PNA-X N5241A) as the microwave source. The resonator cavity was connected via
coaxial cables to the VNA for room temperature measurements. In case of measurements at
cryogenic temperatures, a dilution refrigerator system from BlueFors was used. The VNA
was then connected via coaxial cables to a cryostat flange. Inside the cryostat, stainless
steel transmission lines have been used, where at several temperature stages additional
attenuators are used in order to achieve reasonable signal to noise (S/N) ratios.

(i)

(ii)

(iii)

(vi)

(v)

Figure 4.1.: (a) Schematic experimental setup for low temperature measurements. Tempera-
ture stages are found on 60 K, 4 K, 700 mK (still) and 20 mK (mixing chamber).
Attenuators (small black boxes) are used for S/N adjustments. (i) Adjustable
attenuator, (ii) resonator cavity, (iii) circulator, (vi) 3 to 7 GHz bandpass filter,
(v) 4 to 20 GHz HEMT. In red color: VNA from Agilent. In blue color: the
Helmholtz-Coil connected to a current source. (b) Real picture of the cryostat
without temperature shielding.

Figure 4.1 (a) shows schematically the experimental setup as used for low temperature
measurements. The real cryostat itself is shown in figure 4.1 (b) without temperature
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44 4. Characterization and Measurement of Er:YSO filled Waveguide Resonators

shielding and vacuum can. As seen from figure 4.1 (a), we used an additional variable
attenuator in front of the VNA in order to vary the applied power down to the single
photon regime. At the 20 mK stage, the resonator was placed inside a Helmholtz coil
(HC), providing static magnetic fields up to ≈ 280 mT. A high electron mobility transistor
(HEMT) is used at the 4 K stage, amplifying microwaves in the range between ≈ 4-20
GHz. We used additionally a circulator in front of the HEMT, which sends the microwaves
from port 1 to port 3. Port 1 of the circulator was used as input and port 2 as output.
The reason for the usage of a circulator is the fact, that reflected signals entering port
2 would take the way to port 3, where a 50 Ω terminating resistor1 is used to avoid
reflections. Furthermore, a band pass filter between the circulator and the amplifier is
used, transmitting frequencies from ≈ 3-8 GHz, in order to amplify only the frequency
band of interest. Figure 4.2 demonstrates the case where the resonator cavity is placed
inside the Helmholtz coil:

Figure 4.2.: Helmholtz coil with sample holder (copper) and resonator box. In order to place
the resonator into the volume of highest density of magnetic fields (schematically
indicated by blue arrows [BDC ]), the position of the z-component is fine adjusted
by a top adjustment screw. The x and y positions are predefined by the sample
holder. The oscillating magnetic field (BAC) of the resonator is schematically
indicated by green symbols, where the cross symbol represents the magnetic field
pointing into the paper plane and the dot symbol pointing out of plane. The
condition BDC ⊥ BAC is presented.

In order to align the cavity to the center of highest and most homogeneous magnetic fields
(center between both coils), an adjusting screw for the z-axis component (see figure 4.2)
was used. The x and y components are already fixed by the cryostat’s still stage. The
HC itself was mounted at the still stage too, such engineered that the adjusting screw
(mounted to the mixing chamber stage) lies in the center of the HC. On the other side, the
x and y components are fine adjustable via a cavity sample holder, which was designed in
order to support two kinds of cavity resonators.

1 Typical transmission lines or coaxial cables are such designed to have an input impedance of 50 Ω
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4.2. Waveguide Resonator Version 1 45

4.2. Waveguide Resonator Version 1

The first version of a 3D cavity waveguide resonator was designed by Prof. Dr. Pavel
Bushev according to a paper published by J. G. Hartnett et al. [HTS+05]. The approach
was to use initially the published data for a first version design as discussed next.

4.2.1. Characteristics and Determination of the Resonant Frequencies

In principal, a waveguide resonator consists out of a copper cube, where the waveguide
structure is milled in. Additionally a dielectric material as sapphire is used to scale down
the resonant frequencies (see e.g. section 3.3). The final shape and the corresponding
dimensions of the first waveguide resonator are presented in figure 4.3.

18 mm

6 mm

20
 m

m

Figure 4.3.: Waveguide resonator version 1 with shop drawings in mm dimensions. (a) Top
view, (b) side view, (c) complete box (closed case). (d) Schematic drawing of
the sapphire crystal with dimensions and the teflon plugs (light gray). (e) Real
picture of waveguide resonator version 1 with coaxial cable connectors (opened
case without sapphire crystal).

The resulting copper box consists out of two parts. The bottom part [figure 4.3, (a,b)] is
the box with the waveguide hole, where the upper part is the box cap. The cap is screwed
together with the bottom part, forming the desired cylindrical cavity [figure 4.3 (c)]. The
bottom part of the copper box additionally owns hols at the side walls, serving as entrance
holes for the coaxial cable connectors, in order to couple microwaves into and out of the
cavity.
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46 4. Characterization and Measurement of Er:YSO filled Waveguide Resonators

The sapphire crystal is such designed to fit nearly the whole cylindrical cavity volume.
Approximately 1 mm space was taken into account between the cylindrical wall and the
sapphire crystal in order to avoid stress onto the crystal due to a different thermal expan-
sion coefficient as compared to copper.

Additionally, the sapphire crystal is not a full cylinder, rather owing a tube shape as
presented in figure 4.3 (b).

Such opening is needed to place the sample of interest into the center of the cylindrical
cavity, where two teflon plugs are used as the sample holder for the erbium doped crystals.

In order to characterize the resonator including the sapphire crystal and the teflon plugs,
a transmission spectrum using the VNA was measured:
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QL 4278
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TE211
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Figure 4.4.: Transmission spectrum of waveguide resonator version 1 measured in decibel (dB)
versus frequency from 4 to 8 GHz. The individual resonant frequencies fc are
extracted using a Lorentz-Function fit, whereas the loaded quality factors QL

are calculated according to fc/∆f . The transverse electric (TE) and transverse
magnetic (TM) modes were determined from CST simulations.

Figure 4.4 presents the transmission spectrum of waveguide resonator version 1, measured
between 4 and 8 GHz. The center frequency fc and the loaded quality factor QL of every
transmission peak was determined by separated individual transmission peak measure-
ments.
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The scattering matrix data was evaluated using MatLab and OriginLab, fitting the sub-
sequent Lorentz function to the power spectrum (|S21|2):

L(f) = a+ (
2A

π
)

∆f

4(f − fc)2 + (∆f)2
. (4.1)

The parameters found in equation 4.1 are the offset a, area A, ∆f as the full width at half
maximum (FWHM) and the center frequency fc. More precisely, QL was determined using
equation 3.35, where the intrinsic or internal quality factor is ≈ QL due to low external
coupling (check section 3.3.3 for more details).

In order to localize the TE011 resonant mode, the cavity was modeled with a 3D electromag-
netic wave simulation software from CST (Computer Simulation Technology, Microwave
Studio).

The center frequency values extracted from CST simulations are summarized together
with the center frequency values from the VNA measurements in table 4.1:

Mode No. fc CST simulation [GHz] fc VNA measurement [GHz] relative error [%]

01 4.2384 4.2410 +0.06

02 4.8957 4.9077 +0.25

03 4.9016 4.9350 +0.68

04 5.6284 5.5901 -0.68

05 6.0209 6.0278 +0.11

06 6.0237 6.0390 +0.25

07 6.8054 6.8100 +0.07

08 6.8369 6.8235 -0.20

09 6.8677 — —

10 6.8679 — —

11 6.9480 6.9352 -0.18

Table 4.1.: Extracted center frequency (fc) values from simulation and measurement of waveg-
uide resonator version 1. The mode number is chosen in ascending order compared
to increasing frequency for the simulation case.

Up to this point, table 4.1 only indicates that the measured resonant frequencies coincide
very accurately with the simulation, achieving relative errors below 1 %. Furthermore, it
is observed that some frequency modes found from simulations have been not measured.
Reasons could be degenerate modes or insensitive coupling to such modes.

CST Microwave Studio provides besides the calculated resonant frequencies also the field
distribution of the electric and magnetic field of each calculated mode. By analyzing
these distributions for every resonant frequency, the TE011 mode was successfully found
to resonate at 6.948 GHz (table 4.1, mode number 11). This mode corresponds to the 9th

transmission peak in figure 4.4.

The field distribution of a TE011 mode as present inside the cavity is shown in figure 4.5
on the next page.
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48 4. Characterization and Measurement of Er:YSO filled Waveguide Resonators

Figure 4.5.: CST Microwave Studio simulation of waveguide resonator version 1 with sapphire
crystal and the teflon plugs, taking into account the anisotropy of the permittivity
of sapphire. The TE011 mode is identified by the field distribution of the magnetic
field, resonating at 6.948 GHz (see left inset). The field strength is represented by
a color bar on the right hand side.

Figure 4.5 shows a cut through the copper box simulation model, filled with sapphire
and the teflon plugs. The model should imitate 1:1 the real structures. The magnetic
field distribution is indicated by colored arrows, representing the field strength (see color
bar). The magnetic field reaches highest values at the center of the cavity as needed for
the experiments. In this case, the arrows are pointing from the top to the bottom for
a phase of 90◦ (see left inset of figure 4.5), whereas for 270◦ they would point into the
opposite direction, indicating the oscillatory behavior of the magnetic field. The TE011

mode behavior can be compared to figure 3.21 of section 3.3.2. The observed side holes
of the cavity in figure 4.5 are the entrance holes for the coaxial cable connectors, which
could be left empty for the simulation. Finally, the correct frequency of the desired mode
is determined by experiment, as discussed in the next section.

4.2.2. ESR Spectroscopy of 200 ppm Doped Er:YSO at mK Temperatures

For ESR spectroscopy at mK temperatures the copper box cavity along with the sample
(erbium doped YSO crystal) were installed into the cryostat and probed with a VNA.
Thus, if the correct resonating mode is present and if the oscillating magnetic field of
such a mode is perpendicular to the applied static magnetic field, transitions should be
observed as discussed in chapter 3.1. Moreover, the orientation of the erbium doped crystal
according to the static magnetic field should be set correctly. For this purpose we used
the diagrams published by Sun et al. [SBTC08] as presented in figure 4.6.
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Figure 4.6.: Effective g-factors as function of angle θ and the magnetic inequivalent ground (g)
and excited (e) states. (a) Site 1 of plane D2-b, (b) site 2 of plane D2-b, (c) site
1 of plane b-D1, (d) site 2 of plane b-D1. All graphs taken from [SBTC08].

Figure 4.6 shows the effective g-factors on the vertical axis as a function of the crystal
orientation with respect to an applied static magnetic field, indicated by angle θ. Figure
4.6 (a) and (c) are representing site 1 for the planes D2-b and b-D1, respectively. Figure 4.6
(b) and (d) are used for site 2. Due to magnetic inequivalence, four curves are plotted for
each figure (a)-(d). On mK temperatures effectively the lowest energy level is populated
and transitions appear thus only at microwave frequencies for the ground state, indicated
by black squares (IIg) and circles (Ig). Therefore, at least four transitions should be
observed according to site 1 and 2.

For the first measurement we decided to take an angle of ≈ 10◦ θ for the D2-b plane. In
order to resolve all 4 transitions, angles close to 0◦, 90◦ and obviously 180◦ should be
avoided, as in these regions the g-factors merge. According to the g-factor equation 3.9,
the lowest g-value observed would be ≈ 2, if expecting the TE011 mode resonating at ≈
7 GHz. Furthermore, lower g-factors in case of the static magnetic field should lead to
higher g-factors for the oscillating magnetic field, as described by Probst et al. [PRW+13].
In order to achieve high coupling rates, high g-factors of the oscillating field are desired,
as discussed in section 3.4.

For measurements we increased and measured the current through the Helmholtz coil,
which is proportional to the magnetic field present at the resonator. For every incremental
increase of the magnetic field, the complete transmission signal of the resonance is recorded
using the VNA. The resulting ESR spectrum is thus the applied static magnetic field
versus the transmission signal of the resonator (frequency). At values of the magnetic
field matching the magnetic resonance condition, transitions are induced, indicated by
a change of the resonators Q-factor and a dispersive change of the resonant frequency
(compare e.g. figure 3.19 of section 3.3.1). In order to see such changes at the ESR
spectra, the amplitude of the transmission signal is color coded. ESR spectra as observed
in experiments are presented in figure 4.7 on the next page.
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Figure 4.7.: ESR spectra measured as the applied static magnetic field from the Helmholtz
coil versus the transmission signal of the resonator (frequency and color coded
amplitude). (a) Measured transitions between 0 and 175 mT, where one transition
with g-factor of ≈ 3.5 is clearly observed. Two weak transitions around the main
one are hyperfine transitions. The other two transitions indicated by arrows are
rather harder to determine immediately. The white inset (a) presents the copper
cavity from top view, showing schematically the orientation of the static magnetic
field ~B (red) with respect to the crystal coordinates ~b and ~D2 (blue and green).
The crystal is rotated by 10 degree with respect to the magnetic field axis. (b)
Measured transitions between 175 mT and 280 mT. The final transition with g-
factor of ≈ 1.97 is clearly observed. The transitions distributed around the main
one are hyperfine transitions. The yellow inset is the color-inverted main transition
with fitting (dashed curve) according to equation 4.2.
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Figure 4.7 (a) and (b) show the transmission signal of the resonator along the vertical axis,
where the largest amplitude (|S21|) of the transmission is indicated in red, dropping to the
sides in an almost Lorentzian fashion. The lowest amplitude is described in colors of blue,
where the normalized amplitude is represented by the color bar on the right side.

The doping concentration of the used Er:YSO crystal was 200 ppm. We probed several
resonances around 7 GHz where only the resonance at 6.9885 GHz showed transitions as
presented in the figure 4.7. The resonance frequency of 6.9885 GHz is quite close to the
expected resonance frequency of 6.948 GHz obtained from simulations. The difference of
≈ 41 MHz is explained by considering the temperature dependend change of the dielectric
permittivity (εr) of the sapphire material. If using the temperature dependent εr equation
of R. C. Taber and C. A. Flory published 1995 [TF85], an εr value of 11.58 (parallel to the
crystal axis) is calculated for a temperature of 293.15 K. At 30 mK this value amounts to
11.35. As the frequency scales proportional to 1/

√
εr (see e.g. equation 3.41), there has

to be an increase of ≈ 3 %. Furthermore, if taking the anisotropy into account, i.e. εr
perpendicular to the crystal axis, a change of roughly 6 % is possible, which seems to be
here the case.

The g-factors found in figure 4.7 (a) and (b) are extracted by using equation 3.9. All
measured g-factor values are also found in figure 4.6 (a) and (b) for an angel θ of ≈
10 degree. The smaller transitions observed around the main transition are hyperfine
transitions. In order to determine the coupling strength gcoup and spin linewidth Γ, we
used the subsequent equation which is describing the observed dispersive shift [Poo67]:

ω = ω0 +
g2
coup(ω0 − γgyrB)

(ω0 − γgyrB)2 + Γ2
. (4.2)

The yellow colored inset (color inverted picture of the transition) in figure 4.7 (b) shows
the fit (dashed line) to the data using equation 4.2. From the fit we found the values of
gcoup to be 11.0± 0.1 MHz and that of Γ = 10.4± 0.3 MHz. Parameter B in equation 4.2
is the magnetic field and γgyr is the gyromagnetic ratio.

Unfortunately no strong coupling (no anti-crossing) was observed during the measure-
ments. In order to enhance gcoup, higher values of the oscillating (AC) g-factor are needed,
which on the other hand require lower DC g-factors as measured for the static magnetic
field. For the measurements as presented in figure 4.7, the lowest g-factor was reached for
a value of ≈ 1.97. From publications of Sun et al. [SBTC08] and Probst et al. [PRW+13],
lower g-factors down to ≈ 1.4 could be reached. In order to measure lower g-factors in
our experiments, even a new Helmholtz coil is needed, providing higher magnetic fields,
or a new cavity with lower resonating TE011 mode is required. Consequently we decided
to design a new waveguide resonator as discussed in the next section.

4.3. Waveguide Resonator Version 2

Recapitulating section 4.2 shortly, the required TE011 mode was successfully determined
via simulations. Additionally, measurements with a 200 ppm Er:YSO crystal using this
mode showed transitions on certain magnetic fields, as anticipated. It was not possible to
reach the strong coupling regime using the waveguide resonator version 1 in combination
with the available Helmholtz coil. In order to reach lower values of the g-factor, a new
cavity with lower resonating TE011 mode is required, which is deducible e.g. from equation
3.9 of section 3.1.
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4.3.1. Design and Characterization

For the new waveguide resonator version 2 we decided to use the same approach as for
version 1. In order to shift down the resonant TE011 mode to lower frequencies, the cavity
dimensions have to be increased. Other possibilities would be for example the usage of
a higher valued dielectric material. We decide to stay with the same sapphire dielectric
as used for version 1 as such a dielectric material possesses an adequate loss tangent at
cryogenic temperatures [KDT+99]. As using exactly the same sapphire crystal for version
2, the diameter length of the cavity is consequently fixed. Thus, only the radius a has to
be adjusted. In this case it is helpful to use a so called mode chart:

Figure 4.8.: Typical mode chart for a cylindrical cavity resonator presenting the mode distri-
bution for certain ratios of the radius a and diameter length d. The vertical axis
represents the frequency progression. The ratio according to waveguide resonator
version 1 is mark in yellow, whereas orange is used for version 2. The TE011 mode
is marked in light blue. Intersection points for version 1 and 2 among the TE011

mode are presented via a green circle and a green square, respectively. Neigh-
boring modes are indicated with red circles and a red square. Figure taken from
[Poz11]

From figure 4.8 the mode distribution according to the cylindrical cavity dimensions
(2a/d)2 is deducible. Such a chart represents the case of an air filled cavity and can
be used in our case as a first approach to determine a ratio of the radius a and diameter
length d. In case of a dielectric filled cavity, only the values presented on the vertical axis in
terms of (2af)2 would change, whereas the mode distribution according to the horizontal
axis would stay the same.

As we are faced with a tube shaped dielectric sapphire material with space between the
cavity walls and the dielectric, our cavity is rather a mixture of partially filled with air (or
vacuum) and εr material. Therefore, we use such a chart only as an approach to estimate
the radius and length.

However, as the squared ratio of 2a/d for the waveguide resonator version 1 was ≈ 1,
several other modes are found in the vicinity of the TE011 mode, indicated via red circles
in figure 4.8. The green circle indicates the TE011 mode, degenerate with mode TM111
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(both marked in light blue). A degeneracy of both mentioned modes is not necessarily
given for shapes like used in our case and is rather determined from simulations. The ratio
of ≈ 1 is marked in yellow color. From the chart we find three modes close to the TE011,
being here the TM110, TM012 and TE212 mode.

If comparing the measurement of the mode distribution of resonator version 1 at room
temperature (figure 4.4), three distinct resonant modes are found around the TE011 mode,
which resonates at ≈ 6.94 GHz. The spacing between this mode and the next lower mode
is ≈ 120 MHz, whereas for the next higher one we calculate ≈ 210 MHz. Such neighboring
modes could disturb the preferred mode and also the emission of the resonant photon into
these other modes is maybe more likely. Thus, in order to increase the mode spacing,
it is preferred to follow the light blue line in figure 4.8 to higher ratios of 2(a/d)2. In
such a case the spacing for the TE011 mode with respect to neighboring modes increases
simultaneously.

The ratio of 2(a/d)2 for version 2, which is marked in orange in figure 4.8, shows the TE011

mode at position marked with a green square. The next lower mode is marked via a red
square, whereas the next higher mode is not observable in figure 4.8. In our case, the exact
ratio of 2(a/d)2 is additionally determined from figure 4.9, representing a quality factor
chart:

Figure 4.9.: Typical Q-factor chart for a cylindrical cavity resonator presenting the normalized
quality factors for certain resonant modes according to the cavities dimensions in
ratios of 2a/d with the radius a and diameter length d. The prefactors of Q are
the surface resistivity RS and the wave impedance η or the skin depth δS and wave
length λ0. The ratio and normalized Q-factor of waveguide resonator version 1 is
marked with red lines, whereas for waveguide resonator version 2 green lines are
used. Intersections of the degenerate TM111 mode are marked in orange squares.
Figure taken from [Poz11]

The radius and length are represented at the horizontal axis in figure 4.9, whereas a
normalized, pure geometrical quality factor is found on the vertical axis. The prefactors
of Q are the surface resistivity RS and the wave impedance η or the skin depth δS and
wave length λ0.

The so called Q-Chart shows the mode depended quality factor according to ratios of the
cavity dimension. In this case the ratio of 2a/d for waveguide resonator version 1 is marked
in red (vertical), whereas the highest reachable value of the normalized Q for the TE011
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mode is also marked in red (horizontal). This also indicates that for dimensional ratios of
≈ 1 the highest Q-value is reached. In case of the degenerate TM111 mode, rather lower
values are found, marked via orange squares.

In order to get reasonable quality factors for waveguide resonator version 2, we decide to
take a ratio of 1.5, which would be just ≈ 4.5 % less as compared to version 1, i.e. reaching
≈ 95.5 % of the previous value. For a ratio of 1.5, the ratio according to figure 4.8 would
be 2.25. As the diameter length d is fixed, the radius a = (3/4)d or just 75 % of the length.

Using this value for the radius, a new resonator model was designed with CST Microwave
Studio in order to exactly determine the TE011 mode and to check if a wider neighboring
mode spacing is present, as expected. Due to the fixed value of the diameter, definitely
an increase of the radius a will lead to a lower resonating TE011 mode, expecting the
resonance below 6 GHz.

From simulations of waveguide resonator version 2, the TE011 mode was identified to
resonate at ≈ 5.56 GHz, where the next lower mode resonates at ≈ 4.68 GHz and the
next higher one at ≈ 6.23 GHz. Thus obtaining now a spacing of ≈ 880 MHz and ≈
660 MHz to the next neighboring modes. Therefore, the mode spacing was successfully
increased by a factor of ≈ 4.7 on average, whereas the main resonance of the TE011 mode
was decreased by ≈ 1.5 GHz. The field distribution of the magnetic and electric field of
the new waveguide resonator version 2 are presented in figure 4.10:

Figure 4.10.: CST Microwave Studio simulation of waveguide resonator version 2 with dielec-
tric sapphire material and teflon plugs. The figure shows a cut through the
copper box model where the magnetic field direction and strength of the TE011

mode are observable, indicated by arrows. The color bar on the right hand side
represents the field strength of the magnetic field ~H. The inset on the left shows
a resonant frequency of 5.563 GHz, whereas inset (a) presents the top view of

the resonator, showing the electric field ~E. Again only the half of the copper box
is displayed in order to see the field distribution.

The TE011 behavior of the magnetic field is clearly seen from figure 4.10. The length of
the sapphire crystal was kept the same, whereas the larger radius is clearly noticeable if
comparing with version 1.
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Furthermore, the top and bottom part of the cavity possesses notches in order to keep the
sapphire crystal in position if rotating the complete resonator box by 90 degrees. Such
notches should not disturb the TE011 mode shape, as the current oscillations for this mode
only appear to the axial (z) and azimuthal (φ) direction.

It is seen form the left inset of figure 4.10 that this mode is resonating at 5.563 GHz. If
furthermore comparing the color intensity representing the field strength at the center of
the cavity, values between 9.3 · 105 A/m and 1.1 · 106 A/m are observed. Comparing this
values with version 1, the loss of magnetic field strength in the teflon free region is rather
small as similar values between 9.8 · 105 A/m and 1.3 · 106 A/m are found.

We expected even higher losses due to the increased volume, which seems not to be the
case. This effect is explained by the electrical field distribution of the TE011 mode, found
as inset (a) in figure 4.10 (top view). The electrical fields are mainly confined in the
dielectric sapphire material which also leads to high magnetic fields in its vicinity or the
center of the cavity according to the TE011 mode behavior.

We used the waveguide resonator model from the simulation as blueprint for the physically
real version. This time oxygen free copper was used as material, in order to have a better
electrical conductivity (σ) and thus a higher Q-factor.

Figure 4.11.: Waveguide resonator version 2. Shop drawings with dimensions in mm: (a) top
view, (b) side view. (c) Side cut of the resonator box (closed case), mounted
onto the sample holder with view at the sapphire crystal and the teflon plugs.
(d) Real picture of the resonator (opened case) with sapphire crystal inside. At
the side the two coaxial cable connectors are visible, which are highly coupled to
the resonator indicated via the big coupling loops grounded to the cavity walls
(inside of the cavity).

Blueprint images of the top view (a) and the lateral view (b) are presented in figure 4.11
for the sake of completeness (shop drawings with dimensions in mm). Figure 4.11 (c)
shows an image of the waveguide resonator version 2 mounted onto the sample holder as a
cut through the side, where the positions of the sapphire crystal and the teflon plugs are
visible. The real image of the resonator is shown in figure 4.11 (d).

In order to proof the simulated values from CST Microwave Studio simulations, a trans-
mission spectrum was measured between 4 and 8 GHz. We used the same coaxial cable
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connectors with identical coupling as for measurements using waveguide resonator version
1. We obtained the following transmission spectrum for waveguide resonator version 2:
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Figure 4.12.: Transmission spectrum of waveguide resonator version 2 measured in decibel
(dB) over frequency from 4 to 8 GHz. The individual resonant frequencies fc
are extracted using a Lorentz-Function fit, whereas the loaded quality factors
QL are calculated according to fc/∆f , using again the Lorentz fit values. The
transverse electric (TE) and transverse magnetic (TM) modes between 4 and 6.3
GHz were determined from CST simulations.

In figure 4.12 the individual transmission peaks are presented with its center resonant
frequencies fc and the loaded quality factors QL, extracted form individual transmission
peak measurements and fits as it was done for version 1.

The wide mode spacing between the TE011 mode located at 5.5361 GHz and the neigh-
boring modes is clearly observed.

It is also interesting to mention that most of the resonances possess high quality factors,
which is mainly due to the usage of the oxygen free copper. Especially the quality factor
of the TE011 mode at 5.5361 GHz was measured with a value of 20914.

A similar result is also calculated theoretically if using a conductivity σ of 5.96 · 107 S/m
at room temperature, being Qi ≈ 20775. For the sake of completeness, the measured
resonances are again compared with the simulated values and are summarized in table 4.2
on the next page.
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Mode No. fc CST simulation [GHz] fc VNA measurement [GHz] relative error [%]

01 2.8384 2.8386 +0.01

02 4.4486 — —

03 4.4490 4.4696 +0.46

04 4.6785 4.6729 -0.12

05 4.6788 4.6772 -0.03

06 5.5626 5.5361 -0.48

07 6.2253 — —

08 6.2260 6.2574 +0.50

09 6.5162 6.4870 -0.45

10 6.5508 6.5024 -0.74

11 6.5512 — —

12 6.6221 6.5976 -0.37

13 6.6226 — —

14 7.2872 — —

15 7.6120 7.6026 -0.12

16 7.6192 — —

17 7.7756 — —

18 7.7765 7.8648 +1.12

Table 4.2.: Extracted center frequencies from simulation and measurement of waveguide res-
onator version 2. The mode number is chosen in ascending order compared to
increasing frequency for the simulation case. Values not observed from measure-
ment, but present in simulations are indicated via ’—’. These are sometimes just
close spaced resonances, maybe not resolvable or degenerate in measurement.

From table 4.2 we see that the simulated frequency results are comparable to the measure-
ments within a relative error below or close to 1 %. Values not found for measurements
are mostly due to degenerate frequencies or are not resolvable with the used measurement
setup. As the simulations fit reasonable to the measurements at room temperature, we will
use the resonance frequency at 5.5361 GHz (TE011 mode) to probe erbium doped crystals
at mK temperatures.

4.3.2. ESR Spectroscopy of 200 ppm Doped Er:YSO at mK Temperatures

From previous considerations discussed in the last sections of this chapter, we decide to
probe again the same crystal as used for the measurements with waveguide resonator
version 1 (concentration 200 ppm, orientation θ ≈ 10◦), in order to compare the results
observed with resonator version 1 and version 2. As expected, again we observed four
transitions with nearly same g-factors as it should be the case for θ = 10◦, but this time
the transitions are shifted towards lower magnetic field values. This is not surprising as the
resonance frequency of the TE011 mode was reduced from ≈ 7 GHz to ≈ 5.5 GHz for version
2. Probing the crystal also on other resonances showed no transitions. Transitions have
been only observed for the 5.5 GHz resonance, clarifying this resonance as the expected
TE011 mode.

Furthermore, the quality factor of this resonance was determined with a value of ≈ 72300
at ≈ 25 mK (QL ≈ Qi for low external coupling). The center frequency was determined
with fc = 5.5784 GHz and a bandwidth of ∆f ≈ 77 kHz. Fitting equation 4.2 to the 3rd

observed transition, a coupling strength of gcoup = 2.0 ± 0.1 MHz and Γ with 10.6 ± 0.2
MHz were extracted (figure 4.13).
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Figure 4.13.: ESR spectrum of the first measurement using waveguide resonator version 2 with
200 ppm Er:YSO crystal. The 3rd transition with a g-factor of ≈ 3.3 is observed
with a yellow, dashed fit according to equation 4.2. (a) Top view of the copper

cavity to schematically show the arrangement of the static magnetic field ~B (red)

with respect to the crystal axes ~b (blue) and ~D2 (green). ~b is rotated by 10 degree

with respect to ~B.

Comparing now the coupling strength gcoup of resonator version 1 and version 2, the
coupling strength dropped from ≈ 11 MHz to ≈ 2 MHz for version 2. The value for the
spin linewidth Γ did not change significantly and was measured for both to be ≈ 10.6 MHz
on average. We assume that such a drop of the coupling strength was mainly given by the
relatively high quality factor of resonator version 2, which was measured with ≈ 72300 at
≈ 25 mK. In comparison, the quality factor of resonator version 1 was determined with a
value of ≈ 20500, i.e. ≈ 3.5 times lower.

4.3.3. ESR Spectroscopy of 50 ppm Doped Er:YSO at mK Temperatures

We assume that the resulting linewidth or bandwidth of waveguide resonator version 2 is
too narrow (≈ 76 kHz) and therefore getting only resonant with a fraction of the available
spins of the complete spin ensemble.

From other measurements like e.g. Probst et al. [PRW+13] it was shown, that rather a
lower quality factor and thus a broader resonator linewidth lead to better coupling values,
as the distribution of available spins ranges somewhere between 5 MHz and 30 MHz for
Er:YSO.

58



4.3. Waveguide Resonator Version 2 59

Due to high magnetic anisotropy of the erbium doped crystal, most of the precessing mag-
netic moments are distributed around the overall Larmor frequency and are thus broadened
in frequency. If comparing the linewidth of both resonators, which was found to be ≈ 340
kHz for version 1, nearly a factor of ≈ 4.5 makes the difference. The same factor is also
approximately found for both measured coupling strengths. Therefore, we assume that a
higher external cavity coupling would enhance the coupling strength to the spin ensemble.

To check this assumption, we decide to increase the external coupling to the waveguide
resonator version 2 as schematically presented in section 3.3.3 about two-port networks
and external coupling [figure 3.24 (b)]. Empirically we varied the area enclosed by the
probing loops in order to achieve a low quality factor and thus a broader linewidth ∆f .

The final version of a higher external coupled resonator is shown in figure 4.14 in combi-
nation with the transmitted resonance and a Lorentz fit:
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Figure 4.14.: Waveguide resonator version 2 with coupling loops (indicated by black circles),
grounded to the cavity walls via silver. The area enclosed by such loops deter-
mines the coupling strength. Due to higher coupling, the loaded quality factor
could be reduced from ≈ 20900 to 773, and thus also the bandwidth of the
resonance. The inset presents the measured transmission signal of the TE011

resonance (black), fitted to a Lorentzian function (red). The bandwidth of 7.2
MHz was determined from the fit measured at cryogenic temperatures.

Figure 4.14 shows the waveguide resonator version 2 without cap and the sapphire crystal
in order to see the coupling loops made out of copper. The external coupling to the cavity
is enhanced by increasing the area enclosed by such loops. The loops form a circuit with
the coaxial cable connectors, grounded via silver to the cavity wall as observed in figure
4.14.
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Measurements at cryogenic temperatures showed a significant drop of the loaded quality
factor, determined with a value of 773 from a Lorentz fit (see inset of figure 4.14) and thus
now possessing a bandwidth of 7.2 MHz. The internal quality factor was determined from
equation 3.43.

The coupling coefficient of 2κ was determined at room temperature to be ≈ 3.3 by using
short and equal coaxial cables of same length connected from the VNA directly to the res-
onator cavity. Thus, the attenuation and other disturbing effects regarding the cables can
be neglected. Furthermore, an electrical delay is used to compensate for phase differences.

The external coupling properties (Qe) are purely determined by its geometry, which does
not change significantly (due to symmetry consideration) at cryogenic temperatures. From
QL at cryogenic temperatures and Qe ≈ 1030 at room temperature measurements, Qi was
determined to be ≈ 10700 using equation 3.44.

For this calculation the factor fQi of ≈ 3.46 was determined from the low coupling mea-
surements of QL ≈ Qi at room and cryogenic temperatures. Such factor is the ratio of QL

at a cryogenic temperature and room temperature, compensating for the larger values of
σ at low temperatures.

Low temperature measurements with the higher externally coupled cavity were preformed
using a lower doped Er:YSO crystal with equal crystal axes, containing 50 ppm erbium.
A higher diluted crystal should in principle reduce the spin linewidth Γ, as influences
of neighboring local magnetic fields are reduced and thus leading to less inhomogeneous
broadening effects.

In order to get lower g-factors for the static magnetic field, we also decided to use this
time a higher value of the rotation angle θ, i.e. >10◦. Using again the Sun et al. graphs
[figure 4.6 (a) and (b)], we started with θ ≈ 20◦ in order to observe the last transition
close to the border of our magnetic field scanning range (≈ 280 mT).

Furthermore, it is important to mention that the next presented measurements using a 50
ppm Er:YSO crystal have been operated with a loop to cavity wall grounding using just
ordinary solder tin.

This case is different from the previously mentioned silver grounding as presented in figure
4.14. Such tin could in principle cause some distortions to the applied magnetic fields at low
temperatures induced by superconductive currents and thus leading to inhomogeneities.

However, such effects could not be observed or determined directly at measurements. In
principle it is always recommended to use silver for such purposes instead of solder tin,
which may could possess components getting superconductive at low temperatures and
thus could lead to unwanted effects.

Figure 4.15 on the next page shows the first measurement of the 50 ppm Er:YSO crystal
at cryogenic temperatures (≈ 25 mK), using a higher externally coupled cavity.
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Figure 4.15.: ESR spectrum of the first measurement using a 50 ppm Er:YSO crystal with
higher externally coupled resonator. The first two transmissions are rather hard
to determine from figure, but are indicated via white arrows with its calculated g-
factors. The third and forth transition are clearly observed, where its calculated
g-factors do not fit the effective g-factors graph of inset (a) for an angle θ of
≈ 20◦ (indicated by red, thin lines). (b) Crystal orientation of 20◦ with respect
to the applied magnetic field. Inset (a) taken from [SBTC08].

As previously mentioned, the crystal orientation was chosen for this measurement to be
θ ≈ 20◦, where we expected to find two transitions with g-factors of ≈ 3.9 and ≈ 1.5 using
again the effective g-factor graphs from Sun et al. [SBTC08].

For this measurement it seems not to be the case as presented in figure 4.15. Inset (a)
presents the calculated g-factors of the 3rd and 4th transition using red, thin lines as
markers. It is seen, that the intersection points do not match the black dotted curve, which
could be an indicator for an misalignment of the crystal with respect to the magnetic field,
or a deviation of the crystal axes from its expected positions due to an improper cut of
the crystal.

Usually there are always some slight misalignment’s which are in the most cases negligible,
but in this case also slight variations of θ would not fit the graphs. Furthermore, again
equation 4.2 was fit to the last transition in order to extract gcoup and Γ, which in this
case was determined with 8.9± 0.0 MHz and 23.9± 0.3 MHz, respectively.
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If comparing the gcoup result of the previous presented measurement for a weak exter-
nally coupled cavity using a 200 ppm erbium doped crystal, a higher coupling strength is
achieved.

As the coupling strength is usually enhanced by a higher doping concentration, i.e. gcoup ∝√
N [AKN+11], where N is the number of spins, even a reduction of the concentration as

in our case by approximately a factor of two leads to a higher coupling rate, presumably
due to higher external coupling.

In order to check if the crystal axes are different as expected, further measurements have
been done on other crystal orientations. These measurements are summarized in table 4.3,
also including the previously discussed measurement:

50 ppm Er:YSO (ESR spectroscopy results)

Measurement Transitions (≈ g-factor) MHz

No. ≈ θ◦ 1st 2nd 3rd 4th ≈ gcoup ≈ Γ

1 20 11.6 5.8 2.97 2.56 9 24

2 15 11.0 5.8 2.89 2.69 5 24

3 30 13.2 2.8 2.48 2.25 13.5 20

4 37 ? 2.7 2.14 1.77 8 20

Table 4.3.: ESR measurements of a 50 ppm doped Er:YSO crystal for different orientations
of θ according to the D2-b plane with extracted DC g-factors. Furthermore, the
coupling strength gcoup and the spin linewidth Γ of the most distinct transition
have been extracted, presented in frequency values.

As it is observable from table 4.3, for the second measurement we reduced the angle θ by
5◦, where the most distinct observed transitions just changed slightly.

For example, transition three moved just a little bit to higher magnetic fields (decrease of
the g-factor), whereas the forth transition moved to lower magnetic fields (increase of the
g-factor).

In principle, no big changes have been observed for the first two measurements. The
situation changed rather for higher rotations of θ, as it was the case for measurement
number 3 and 4.

It is seen from table 4.3 that the 2nd transition of the third measurement moved distinct
to higher magnetic fields, whereas the forth measurement already showed a low g-factor
value of 1.77. The 1st transition of measurement number 4 could not be obtained clearly,
therefore not presenting its g-factor.

The reason for the variations of the coupling strength gcoup could not be determined
clearly, but in principle the coupling strength amounts to be on average ≈ 9 MHz and
thus definitely higher than for the measurement with lower external coupling. The value
of Γ seems to get smaller for higher magnetic fields.

Further effects are observable directly from the measurement spectra, as presented in figure
4.16 and figure 4.17 on the next page.
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Figure 4.16.: ESR spectrum for a 50 ppm Er:YSO crystal. (a) 3rd measurement at θ ≈ 30◦

between 120 and 230 mT, presenting the last three transitions. (b) 4th mea-
surement at θ ≈ 37◦ between 120 and 230 mT, again presenting the last three
transitions. The transition marked in purple is still weaker than the other two,
even for higher magnetic fields.
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Figure 4.16 (a) shows the measurement results for a crystal orientation of θ ≈ 30◦, whereas
(b) was measured for an angle of θ ≈ 37◦. Two distinct effects are observed for the transi-
tion marked with a purple arrow in both plots (a) and (b). The transition in figure 4.16 (a)
is still weaker than the two other ones (marked by black arrows). If changing θ by ≈ 7◦,
the transitions marked by black arrows do not change its positions significantly. Alterna-
tively, the transition marked in purple changes quite distinct, which is also observable from
the g-factor. Furthermore, the transition strength does not change appreciable for higher
magnetic fields, whereas the other two transitions are still stronger in transition as it was
the case for the measurement (a) of figure 4.16. In addition, there is another difference
between figure 4.16 (a) and (b), which is the overall transition strength being in general
weaker for (b). This observed effect could not been explained or determined exactly.

Another interesting effect was observed at a measurement for the same orientation of
θ ≈ 37◦, where two measurements have been taken with a break of 3 days in between,
presented in the figure 4.17:
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Figure 4.17.: ESR spectra of the 4th measurement using a 50 ppm Er:YSO crystal at θ ≈ 37◦

between 120 and 245 mT, observing the last three transitions. (a) Spectrum taken
on 9th of October. (b) Spectrum taken on 13th of October, after a measurement
break of three days. The highest observed transition (see yellow squares) changed
its position after the measurement break, which is an temperature effect. In
comparison, the other two transitions did not change its position significantly.

On the 8th of October the cryostat reached ≈ 25 mK, where the first measurement was
taken one day after [9th of October, figure 4.17 (a)]. In order to check the cavity and the
sample according its temperature behavior, we stopped the measurements for 3 days to
avoid temperature influences from outside and to let the system completely relax down.
Surprisingly, the measurement from 12th of October showed a change of the transitions
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in position, i.e. the position according to the magnetic field [figure 4.17 (b)]. Especially
the change in position was distinct for the last transition, indicated by a yellow rectangle
in figure 4.17 (a) and (b). This observation showed us, that there are some temperature
effects, which is most probably caused by the teflon plugs. As the teflon plugs serve as
the crystal sample holder, we think, that the teflon plugs rather contract more slowly
than the crystal. Thus, leading to slight misalignment of the crystal itself with respect
to the applied magnetic field. Such alignments would be noticeable as transition shifts,
which are definitely observed in figure 4.17. With the data of the last measurements and
the 50 ppm Er:YSO, we used a self-modified version of the simulation software EasySpin
(www.easyspin.org, [SS06]) in order to determine the correct orientation of the crystal
axes. We feed the software with the corresponding g-tensors for site 1 and site 2 taken
from Guillot-Noël et al. [GNBG+06]. The next step was to let the program vary the
corresponding angles θ and φ until certain g-factors have been found in a defined magnetic
field range matching approximately our measured g-factors. In detail, we adjust the angles
manually to match the factors more accurately. Finally, we extracted φ = 78◦, which is
different from our expected value of φ = 90◦. Simulations matching our measurements
with corresponding θ values are found in figure 4.18:

0 50 100 150 200 250
−5

−4

−3

−2

−1

0

1

2

3

4

5

Magnetic Field [Tesla]

M
ag

ni
tu

de
 (

ar
bi

tr
ar

y)

Site 1
Site 2

0 50 100 150 200 250
−5

−4

−3

−2

−1

0

1

2

3

4

5

Magnetic Field [Tesla]

M
ag

ni
tu

de
 (

ar
bi

tr
ar

y)

Site 1
Site 2

F
re

qu
en

cy
 [

G
H

z]
F

re
qu

en
cy

 [
G

H
z]

Magnetic Field [T]

Magnetic Field [T]
Magnetic Field [mT]

M
ag

n
it

u
d

e 
(a

rb
it

ra
ry

)
M

ag
n

it
u

d
e 

(a
rb

it
ra

ry
)

Site 1
Site 2

Site 1
Site 2

Figure 4.18.: Simulation results compared to measured ESR spectra. (a) and (c) are EasySpin
simulations for φ = 78◦, where (a) is for θ ≈ 30◦ and (c) for θ ≈ 37◦, using
magnetic field versus the magnitude of the transitions in arbitrary units (not to
scale). Transitions in red correspond to site 1, whereas the green ones correspond
to site 2. The black dashed box of part (a) and (c) show the section equivalent to
the measurements of (b) and (d), respectively. (a) and (c) show all 4 transitions.

Figure 4.18 (a) and (c) are simulations using the EasySpin [SS06] software. Figure 4.18 (a)
shows the case for θ ≈ 30◦, which is matching our measurement results as confronted in (b).

65



66 4. Characterization and Measurement of Er:YSO filled Waveguide Resonators

The simulation is plotted as the magnetic field versus the magnitude of the transitions in
arbitrary units. The magnitude of the simulation is not correlated to the real measurement
amplitude and is set manually for the software simulations.

The black dashed box in (a) shows the region of the measurement (b), where the sim-
ilar case is found for figure 4.18 (c) and (d). If comparing the simulation (a) with the
measurement (b), or (c) and (d), it is seen that the weak transitions corresponds to the
magnetically inequivalent site 1 (red curve for simulation), whereas the green transitions
correspond to site 2. Such green transitions in the simulation correspond to the distinct
transitions as observed in measurement.

Furthermore, it is seen from the simulation and the measurement that one of the site 1
transitions rather change its position stronger for relatively small changes of the angle θ.
This does not seems to be the case for site 2.

On the other hand, the second transition of site 1, found at relatively low magnetic fields
[figure 4.18 (a) and (c)], even does not change its position significantly. In order to explain
the relatively weak transitions observed for site 1, we plotted the DC and AC g-factors
respectively for site 1 and 2 in the same manner as it is found for the graphs of Sun et al.
[SBTC08], using the data from simulation.
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Figure 4.19.: Extracted g-factors from EasySpin simulations for φ = 78◦ regarding site 1. (a)
g-factors for the static magnetic field (DC). Black crosses mark the measured
g-factor values (see e.g. table 4.3). (b) g-factors for the oscillating magnetic field
as present in the resonator cavity. Both plots show that the DC g-factor scales
simultaneously with the AC g-factor for same values of θ.
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Figure 4.20.: Extracted g-factors from EasySpin simulations for φ = 78◦ regarding site 2. (a)
g-factors for the static magnetic field (DC). Black crosses mark the measured g-
factor values (compare e.g. table 4.3). (b) g-factors for the oscillating magnetic
field as present in the resonator cavity. Both plots show that for same values of
θ lower DC g-factors correspond to higher AC g-factors.

Our explanation regarding the weak observed transitions is found for the g-factors de-
scribing the oscillating (AC) magnetic field as present inside the resonator cavity. From
the discussions found in chapter 3.4, the coupling is enhanced for high values of the AC
g-factor. Hence, comparing the AC g-factors of site 1 [figure 4.19 (b)] with that of site 2
[figure 4.20 (b)], we seen that the AC g-factor of site 1 nearly scale simultaneously with
the DC g-factor. In the case of site 2 the situation changes, as for lower values of the DC
g-factor higher values of the AC g-factors are found. Thus, to reach a high value of an AC
g-factor, we decided to rotate the crystal to 70◦ of θ, as marked in figure 4.20 (a) and (b)
by a dotted line at θ = 70◦.

Furthermore, we decided to use 70◦ in order to be able to resolve all 4 transitions. For
angles higher than 70◦ the transitions start to merge. We expect to achieve for a DC g-
factor of ≈ 1.7 an AC g-factor of ≈ 14 or more, as it would be needed to get into the strong
coupling regime. The other dotted lines found in figure 4.19 and 4.20 are the θ positions
regarding the experimental measurements for 20◦, 30◦ and 37◦. The black crosses in part
(a) of both figures are the extracted g-factors from measurement, as it is also found in
table 4.3.
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68 4. Characterization and Measurement of Er:YSO filled Waveguide Resonators

4.3.3.1. Strong Coupling

Rotating the crystal to an angle of θ ≈ 70◦, we furthermore adjusted the teflon plugs, in
order to avoid stress onto the crystal due to thermal contraction effects as it was observed
in figure 4.17. Additionally, this time we grounded the coupling loops to the cavity walls
using silver, as already discussed previously (see e.g. figure 4.14).

Magnetic Field [T]

Figure 4.21.: ESR spectroscopy of Er:YSO for an crystal orientation of θ ≈ 70◦ [inset (a)].
The main transitions are indicated by white arrows with its calculated DC g-
factors. Weaker and smaller transitions around the distinct transitions are likely
hyperfine transitions. The last, main transition with a g-factor of ≈ 1.7 indicates
strong coupling.

As expected, at mK temperatures we observed the transitions at its predicted positions
according to figure 4.19 and 4.20 for φ ≈ 77◦ ± 1◦, determined by the corresponding
DC g-factors. Additionally, smaller and weaker transitions distributed around the main
transition are the hyperfine transitions according to the 167Er3+ isotopes. The complete
spectrum as presented in figure 4.21 was measured at approximately 38 photons, deter-
mined by equation 4.3:

N =
P τ

h fc
. (4.3)

N is the number of photons, P is the power, h is the Planck constant and fc the resonators
center frequency. The lifetime of a photon inside the cavity is determined by 1/∆f , which
is τ in equation 4.3. The power was determined from the VNA and the attenuation towards
the waveguide resonator, expecting thus a power of ≈ 1 fW at the resonator.
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Finally, the last distinct transition with g-factor of ≈ 1.7 showed strong coupling behavior.
In order to proof this, we used the transmission signal of the resonator at the anti-crossing
point and normalized it to the initial resonator transmission signal without disturbance.
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Figure 4.22.: Mode splitting (red) of the g ≈ 1.7 transition as observed in figure 4.21. The data
was normalized with respect to the undisturbed resonator signal (black). From
fit (see inset (a), blue line) the coupling strength gcoup was determined with a
rate of 21.2 ± 0.3 MHz, whereas the spin linewidth was determined with a rate
of Γ = 18.0± 0.7 MHz, using values at HWHM.

The extracted mode splitting presented in figure 4.22 (red) in comparison to the undis-
turbed resonator (black) was fitted according to equation 4.4, as similarly published by
Schuster et al. [SSG+10]:

|S21|2 =

∣∣∣∣∣∣y0 +
κLA

i(f − fr)− κL +
g2coup

i(f−fe)−Γ

∣∣∣∣∣∣
2

. (4.4)

Here, y0 is used for offset- and A for amplitude corrections, where fr is the center frequency
of the resonator and fe is the resonance frequency of the ensemble. The parameter gcoup
is the coupling strength, Γ is the spin linewidth at HWHM, i serves as the imaginary
number and κL is the loaded resonator linewidth at HWHM. In comparison with the
previous measurements, the coupling strength increased, whereas the spin linewidth Γ did
not change significantly. A mode splitting was only observed for the previously mentioned
transition, where in comparison the second distinct transition of figure 4.21 was determined
with gcoup = 12.5± 0.5 MHz and Γ = 22.1± 1.3 MHz.
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70 4. Characterization and Measurement of Er:YSO filled Waveguide Resonators

4.3.3.2. Power Dependance of the Strongly Coupled Transition

In order to study the power dependance of the strongly coupled transition, we probed the
mode splitting on different powers and thus on different number of photons, as displayed
in figure 4.23.

F
re

qu
en

cy
 [

G
H

z]

F
re

qu
en

cy
 [

G
H

z]

PNA Power [dBm]

Magnetic Field [T]

Figure 4.23.: Mode splitting according to different applied powers. The power was varied
directly at the VNA, showing the values on the horizontal line in dBm. Taking
into account the attenuation, this figure represents the photons present inside
the resonator, which ranges from ≈ 375 to 37.5 · 106. (a) Approximately single
photon regime measurement of the strongly coupled transition.

Different VNA powers, as shown in figure 4.23 on the horizontal axis, correspond to ≈
375-37.5 · 106 photons if taking the additional attenuators into account. As it is seen from
figure 4.23, no significant change of the mode splitting is observed. Except for VNA powers
close to 20 dBm, the two transmission peaks (red) of the mode splitting start slightly to
broaden. As the used VNA was limited to 20 dBm, only measurements up to ≈ 37.5 · 106

photons were possible.

Inset (a) of figure 4.23 represents the approximately single photon regime measurement.
In order to get into the single photon regime we used -50 dB for the adjustable attenuator
on applying -5 dBm (including the attenuation inside the cryostat, plus cables).
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4.3.3.3. Coupling Strength Versus Temperature

Another experiment which was carried out according to the mode splitting is the behavior
of the coupling strength gcoup with respect to increasing temperature:
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Figure 4.24.: Measurement (black points) of the coupling strength gcoup in MHz as a function
of the temperature in Kelvin. Fit (red) according to equation 4.6 using only
gcoup(0) as fit parameter, resulting in 21.6± 0.2 MHz.

For figure 4.24 we increased the temperature at the mixing chamber, while waiting for
approximately 30 minutes before starting the measurement of the strongly coupled tran-
sition. The time delay after temperature increase and measurement is necessary, as the
temperature increase displayed by the temperature sensor is not implicitly the same at
the sample. From the measured data sets we extracted again the coupling strength gcoup
using equation 4.4.

The coupling strengths is first rising to higher values in the temperature region between
0 and ≈ 100 mK, but then dropping with the hyperbolic tangent square root behavior as
described by equation 4.6.

In this case we are not sure if we just observe measurement errors, or if this could be
a general behavior of a 3D waveguide resonator cavity coupled to Er:YSO. Maybe addi-
tional measurements using other erbium doped crystals in combination with 3D waveguide
resonators will confirm or refute such a behavior for temperature regions between 0 and
≈ 100 mK.
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72 4. Characterization and Measurement of Er:YSO filled Waveguide Resonators

As a usual procedure, we tried to fit the formula 4.5 to the data presented in figure 4.24.
This was also done by several other groups for temperature dependent coupling strengths,
as e.g. [BFR+11, SRA+12, RdS+13].

gcoup (T ) = gcoup,S

√
N tanh

(
hf0

2kBT

)
= gcoup (0)

√
tanh

(
hf

2kBT

)
. (4.5)

The parameter gcoup,S in equation 4.5 is the coupling strength for a single spin, whereas
in combination with the collective number of spins N the coupling at zero temperature
[gcoup (0)] is defined.

In order to fit this theory to our data, we used only gcoup (0) as fit parameter, whereas the
other parameters like h (Planck constant), f0 (resonance frequency) and the Boltzmann
constant kB are known. However, fitting procedures using equation 4.5 did not lead to
satisfactory fitting results.

Alternatively we introduced an additional fit parameter to the argument of the hyperbolic
tangent function of equation 4.5, which led to a factor of ≈ 0.5. Thus we used equation
4.6 to fit our data:

gcoup (T ) = gcoup (0)

√
tanh

(
hf

kBT

)
. (4.6)

Finally, we achieved a way better fitting result using this equation as it was the case for
equation 4.5. A similar case was also recently observed by S. Probst using a transmission
line resonator (copper), probing a 50 ppm Er:YSO crystal [Pro13]. The difference between
equation 4.5 and 4.6 is the value of 1/2 in the argument of the hyperbolic tangent expres-
sion. Thus, a factor of 2 in the hyperbolic tangent argument changes the situation for the
ordinary derived theoretical equation. Up to now we can not explain the origin of such a
factor of 2.

The derivation according to equation 4.5 is explained by e.g. Feynman [FLS64] using

N1 ∼ N exp(x)
exp(x)+exp(−x) as the population of the lower energy level and N2 ∼ N exp(−x)

exp(x)+exp(−x)

as the population of the upper energy level. The argument of the exponent is x = µB/kBT
according to the Boltzmann statistics and N = N1 + N2. The population difference of
both levels is then found as:

N1 −N2 = N
ex − e−x

ex + e−x
= N tanh(x) , (4.7)

where hf = 2µB if defining the z-component of the magnetic moment as ∆E = ±µzB.
Same derivation is also found from Kittel [Kit96], or see chapter 3.1, section 3.1.1 of this
thesis.

In contrast to the simple derivation explaining equation 4.5, which just covers the uncou-
pled spins, one might need to consider the full system consisting of the resonator and the
spin ensemble. However, plotting both equations against each other, it is clearly seen that
equation 4.6 drops less with temperature as compared to equation 4.5. Such a difference
between both equations is presented graphically in figure 4.25 (a) on the next page.
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Figure 4.25.: Comparison of two cases of the square root of the hyperbolic tangent function
representing the coupling strength (arbitrary units) as a function of the temper-
ature in Kelvin. (a) Red curve: hyperbolic tangent function with argument 1/T .
Green curve: hyperbolic tangent function with argument 1/2T . The coupling
strength for the green curve drops more rapidly for T ≈ 100 mK. (b) Similar
case as for (a), expect that a prefactor of 2 was used for the green curve in order
to show the approach of both curves for gcoup for higher values of the temperature
(≈ 400 mK).

Figure 4.25 (a) shows the case for both equations 4.5 and 4.6, where a value for f was
chosen according to waveguide resonator version 2 with 5.59 GHz.

The green curve clearly shows that the coupling strength gcoup drops more rapidly starting
from ≈ 100 mK compared to the red curve.

For figure 4.25 (b), green curve, a different value for gcoup(0) or
√
N =

√
2 was used to

show that both curves are approaching same values of (∆gcoup/∆T ) for higher values of
the temperature.
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5. Measurements using Superconductive
Lumped-Element Resonators

5.1. Experimental Setup

The experimental setup regarding the measurements using superconducting lumped ele-
ment resonators is in principle similar to the experimental setup as presented in chapter 4.1.
Instead of using a Helmholtz coil to apply static magnetic fields, we used a solenoid coil.
With such an arrangement inside the cryostat we were able to preform two experiments
at one cool down procedure.

Figure 5.1.: Picture of the BlueFors cryostat without temperature shielding, showing the
solenoid coil connected to the 700 mK stage (still, golden plate at the top of
the figure).

The solenoid coil provides 0 to 400 mT and is connected to the 700 mK stage (still), which
is seen at the top of figure 5.1. As the solenoid coil is positioned above the Helmholtz coil,
we did not operate the Helmholtz coil while running the solenoid coil. The sample holder
with the resonator is inserted into the solenoid coil, where the sample holder is mounted
to the ≈ 20 mK stage (mixing chamber), which is the golden plate at the bottom of figure
5.1. The used amplifier for signal amplification after the resonator and circulator is able
to amplify a frequency range of 4 to 8 GHz, which is sufficient for LEKID resonator usage.
The word LEKID is usually used as a brand name for the resonators and means exactly
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76 5. Measurements using Superconductive Lumped-Element Resonators

Lumped Element Kinetic Inductance Detectors [DMN+08, WHK+11]. In our case, we
rather speak of resonators than detectors, but still calling the devices LEKID resonators.

Such resonators are made of small structures which look like lumped elements, as it is
typically used in circuit designs. The resonance frequency is defined by the capacitive (C)
and inductive (L) parts, as indicated in figure 5.2.

Figure 5.2.: Superconducting lumped element resonators (9 resonators) with feed line (trans-
mission line). The lumped element structure is emphasized schematically in yel-
low, showing the capacitive (C) and the inductive (L) part.

The inductive part is achieved by a meandered line (see figure 5.2, L), whereas the ca-
pacitive part are stripes or ’fingers’ separated by a certain distance forming an lumped
capacitor (figure 5.2, C). The resonance frequency is then described by both parts as
ω0 = 1/

√
LC, whereas superconductivity is beneficial to reach high quality factors.

5.2. ESR Spectroscopy of 200 ppm Doped Er:YAlO using a
9 LEKID Resonator

For microwave spectroscopy of a 200 ppm erbium doped yttrium orthoaluminate (Er:YAlO),
the crystal was placed on top of a 9 LEKID resonator chip. The superconductive chip is
placed inside a copper box as shown in figure 5.3:

Figure 5.3.: (a) 200 ppm Er:YAlO crystal on top of a 9 LEKID resonator chip. (b) Copper
box with coaxial cable connectors containing the superconducting chip. (c) Copper
box cap with a teflon screw in the center, using it to fix the position of the crystal
inside the copper box and the superconducting chip.
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5.2. ESR Spectroscopy of 200 ppm Doped Er:YAlO using a 9 LEKID Resonator 77

The crystal itself is separated by an air gap to the LEKID resonators, where the gap dis-
tance should be as small as possible for effective coupling. Such a gap distance is adjusted
by observing Newton fringes. The fringes originate from the reflections of both interfaces
lending to interference effects, where the gap distance is proportional to the observed
fringes. In order to fix the final position of the crystal on top of the superconducting
chip [figure 5.3, (a)], we use a teflon screw integrated in the center of the copper box cap
[figure 5.3 (c)]. Finally, the complete copper box is mounted onto a sample holder, which
is interjected into the solenoid coil. The 9 resonators on the superconducting chip are res-
onating between ≈ 3.6 and ≈ 4.2 GHz, where the frequency spacing between neighboring
resonances is sometimes very narrow as e.g. observed from figure 5.4:
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Figure 5.4.: ESR spectrum of a 200 ppm Er:YAlO crystal using a 9 LEKID superconducting
resonator chip, where 9 resonances are observed due to the LEKIDs and one
resonance is most likely a chip resonance. Transitions have been only observed for
the displayed range of 0 to 50 mT. The main transition is clearly observed for each
resonator between ≈ 30 mT and ≈ 35 mT. The crystal orientation with respect
to the applied static magnetic field is presented in inset (a), where the crystal is
indicated via a green dashed rectangle. The crystal axes are found in blue.

Figure 5.4 shows a measurement rage from 0 to 50 mT for the applied static magnetic
field from the solenoid coil. We also scanned for higher magnetic fields, but did not
observe anything new above 50 mT. The main transition is found for a g-factor of 〈≈ 8.37〉,
which was extracted by fitting equation 4.2 to some of the observed transitions not highly
disturbed by transition in the vicinity and taking the average. Furthermore, a coupling
strength of 〈gcoup〉 ≈ 34 MHz and a spin linewidth of 〈Γ〉 ≈ 33 MHz have been extracted.
Additionally, hyperfine transitions according to the 167Er3+ isotope are weakly observed
between 0 and 30 mT. The crystal orientation with respect to the applied static magnetic
field and its crystal axes a and b is schematically displayed in inset (a) of figure 5.4.
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78 5. Measurements using Superconductive Lumped-Element Resonators

In order to observe also other transitions and to understand how the crystal behaves with
respect to the applied static magnetic field, we decided to go for a second measurement
with a different crystal orientation.

5.3. ESR Spectroscopy of 200 ppm Doped Er:YAlO using a
3 LEKID Resonator

To avoid influences of closely spaced resonances onto the transition spectrum, we decided
to use a 3 LEKID superconducting chip for the second run. Additionally we rotated the
crystal by 45◦ with respect to the applied static magnetic field as presented in inset (a) of
figure 5.5:
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Figure 5.5.: ESR spectrum of a 200 ppm Er:YAlO crystal using a 3 LEKID superconducting
resonator chip. Two transitions between ≈ 30 mT and ≈ 35 mT are clearly
observed, corresponding to the two completely crystal covered LEKID resonators
as schematically presented in (a). The crystal is indicated via a green dashed
box, with corresponding crystal axes in blue. Additional hyperfine transitions are
distributed around the main transition.

Inset (a) of figure 5.5 indicates that the crystal (green, dashed box) only occupies two
of the lumped element resonators completely, whereas the third one is partially covered.
Thus, only two transitions are clearly observed corresponding to the occupied resonators
oscillating at ≈ 4.39 GHz and ≈ 4.47 GHz, respectively. The third resonator is not show
in figure 5.5 as no transitions were observed.

In order to proof if strong coupling is present between the 4.39 GHz resonator and the
spin ensemble, the transmission signal at the anti-crossing has to be analyzed. For this
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5.3. ESR Spectroscopy of 200 ppm Doped Er:YAlO using a 3 LEKID Resonator 79

purpose additional corrections to the transmitted |S21| signal have been necessary. First
of all we subtracted the background signal from the mode split signal, as well as for the
undisturbed resonator. The undisturbed resonator signal was used for data normalization,
whereas the mode split signal showed a third dip between the main two dips of the mode
splitting. Such third dip originates from the feed line of the LEKID chip architecture
and should be removed from the transmission signal in order to clearly identify the mode
splitting. Fitting three Lorentzian curves to each dip using OriginLab, the corresponding
Lorentz fit values are used to get rid of the absorption line contributions. Finally, the pure
mode splitting is observed:
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Figure 5.6.: Mode splitting (red) of the resonance at ≈ 4.39 GHz (black) showing strong cou-
pling. Inset (a) shows the pure mode splitting with fit (blue) according to equation
5.1. Extracted fit values for the coupling strength are gcoup = 34.0± 0.2 MHz and
22.1± 0.5 MHz for the spin linewidth Γ.

To determine the coupling strength gcoup and the spin linewidth Γ from the mode split
power transmission signal (figure 5.6, red curve), we used the subsequent equation for
fitting procedures:

|S21|2 =
(κΓ− g2

coup + (ω − ω0)2)2 + (ω − ω0)2 (κ− Γ)2

(κΓ + g2
coup − (ω − ω0)2)2 + (ω − ω0)2 (κ+ Γ)2

. (5.1)

The resonators decay rate is described by κ, ω0 is the center angular frequency, Γ is the spin
linewidth and gcoup is the coupling strength (values at HWHM). Equation 5.1 represents
a simplified version of the initially published equation by Afzelius et al. [ASJ+13]. We
assumed that the homogeneous linewidth is � Γ and that g2N = gcoup for simplicity.
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80 5. Measurements using Superconductive Lumped-Element Resonators

From the fit using equation 5.1 we extracted a coupling strength of gcoup = 34.0±0.2 MHz
and a spin linewidth of Γ = 22.1 ± 0.5 MHz. In comparison to equation 4.4, we achieved
better fits to the strongly coupled transition using equation 5.1.

5.3.1. Coupling Strength Versus Temperature

We used the same procedure as previously described in section 5.3 to extract the coupling
strength values for temperature dependent measurements as presented in figure 5.7:
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Figure 5.7.: The dependance of the coupling strength gcoup given in frequency values as a
function of the temperature (mK). The black points are extracted gcoup values
from appropriate fits using the measured data. The red curve was fitted according
to equation 4.5 using only gcoup(0) as fit parameter.

The temperate measurement was realized in the same way as it was done for Er:YSO,
coupled to a waveguide resonator (chapter 4.3.2). Strong coupling was observed up to
a temperature of ≈ 100 mK for which we used equation 5.1 to fit and extract the gcoup
values. Above 100 mK we used equation 4.2. Best fits for the extracted data are found for
equation 4.5, i.e. gcoup(T ) = gcoup (0)

√
tanh (hf/2kBT ). Only gcoup (0) was used as a fit

parameter resulting in 34.6± 0.2 MHz, whereas all other parameters are constants, except
of the resonators resonance frequency (4.39 GHz).

From discussions found in chapter 4.3, section 4.3.2, the situation found in figure 5.7
describes a more rapid dropping of the coupling strength with respect to the temperature.
Therefore, the choice of equation 4.5 is more appropriate. In case of Er:YSO coupled to
a waveguide resonator we observed strong coupling up to ≈ 700 mK, where the data was
more accurately described via equation 4.6.
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5.3. ESR Spectroscopy of 200 ppm Doped Er:YAlO using a 3 LEKID Resonator 81

5.3.2. Crystal Impurity (Ce3+)

For measurements above 70 mT, two additional transitions have been observed as presented
in figure 5.8:
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Figure 5.8.: Additional transitions far above 70 mT with g-factors 1.28 and 1.24 found at ≈
245 mT and ≈ 253 mT, respectively. As two closely spaced main transitions are
observed, indicating no hyperfine transitions, they could be associated with cerium
Ce3+ as reported by Asatryan et al. [ARM97]. Furthermore, from the reported
g-tensors for erbium and cerium [ARM97], such g-factors are only found for Ce3+.
Inset (a): g-factors for erbium (Er3+), neodymium (Nd3+) and cerium (Ce3+) as
function of rotation angle θ according to the applied static magnetic field for a
resonator frequency of 9.204 GHz. Direction [001] corresponds to crystal axis b
and [010] to a. g-factor values of Ce3+ depend also onto a deviation angle α =
31.8◦ from [100] direction. Inset (a) taken from [ARM97].

According to the published paper from Asatryan et al. [ARM97], the observed transitions
with g-factors of g ≈ 1.28 and g ≈ 1.24 are most probably due to cerium (Ce3+) impu-
rities. In the paper the g-tensor for Ce3+ was reported as gx = 3.162, gy = 0.402 and
gz = 0.395 with an deviation angle of α = 31.8◦ of the magnetic axis x according to the
crystallographic axis a or [100].

From inset (a) of figure 5.8, a g-factor of ≈ 9.39 is calculated for Er3+ at position theta
= 0◦ if interpreting the plot correctly with a magnetic field of 70 mT and frequency 9.204
GHz. Such position1 ([001]) corresponds to our crystal axis b (see e.g. figure 5.5), where
we measured a g-factor of ≈ 9.38 for erbium. At theta ≈ 45◦, a g-factor of ≈ 8.22 is

1 Pbnm space group representation: [100] = a, [010] = b, [001] = c. For interpretation of the [ARM97]
data, the Pnma space group representation is equivalent to [100] = c, [010] = a, [001] = b. See Pbnm,
Pnma space group discussion at [BSBS09].
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calculated if adopting a magnetic field of 80 mT from inset (a). In our case we found for
the same orientation a g-factor of ≈ 8.37.

A g-factor of ≈ 1.3 is found for Ce3+ from inset (a) at theta ≈ 40◦ corresponding to ≈ 500
mT if using the data from Asatryan et al. In our case this would correspond to ≈ 250 mT,
as the probing frequency is approximately the half as used by Asatryan et al. [ARM97].
If taking the previously mentioned deviation angle of α = 31.8◦ into account, this could
coincide with our crystal orientation as found in figure 5.5 (a).

Furthermore, Asatryan et al. reported in their paper that typically two main magnetically
non-equivalent lines of Ce3+ exist without hyperfine structures due to zero nuclear spin
isotopes [ARM97], as it is also observed in our case of figure 5.8. Further transition as e.g.
according to Nd3+ (neodymium) have not been observed, which was different for Asatryan
et al. (inset (a), figure 5.8). Usually such a transition would be identified by its hyperfine
transitions due to odd isotopes 143Nd and 145Nd [ARM97] at higher magnetic fields.

According to this facts, we are sure to observe Cerium impurities at ≈ 245 mT, which also
tolerates the g-tensor values reported by Asatryan et al. [ARM97].
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6. Summary

Telecom C-band optical communication combined with modern superconducting quantum
processing units are maybe the backbones of future quantum communication and quantum
information processing. This requires coherent quantum converters interfacing optical and
microwave frequencies. Erbium doped crystals have both transitions in the optical as well
as in the microwave domain. Rare earth doped crystals serve as a quantum memory,
whereas a resonator cavity is used as a bus between the crystal and the processing units.
In order to coherently extract or provide quantum information, strong coupling is required
between both devices and long coherence times are desired. Such times are determined by
the environment of the spin ensemble.

The focus of this thesis lies on the investigation of a first version waveguide resonators,
possessing a homogeneous oscillation magnetic field at approximately 7 GHz. The modes
of the cavity have been calculated via numeric simulations. The resonator along with
the erbium doped crystal was placed inside a cryostat, where temperatures around 25
mK have been reached. We used Electron Spin Resonance (ESR) spectroscopy to probe
the electronic spin transitions. Strong coupling was not observed for version 1 of the
waveguide resonator. This is why a new waveguide resonator (version 2) for additional
ESR measurements was designed.

Compared to version 1, we reduced the resonance frequency of the TE011 mode to 5.5 GHz
in order to access larger scanning ranges. Additionally, the frequency range to neighboring
resonant modes was increased. The resonators loaded quality factor was reduced to match
the spin linewidth of the spin ensemble. Using a 50 ppm erbium doped YSO crystal, several
ESR measurements have been necessary in order to figure out the magnetic anisotropy of
the crystal. With the measurement data it was possible to determine the proper crystal
orientation using a self modified version of the simulation software EasySpin. Knowing
the proper orientation, strong coupling of the waveguide resonator to the spin ensemble
could be demonstrated.

Apart from the measurements with waveguide resonators, additional ESR spectroscopy
using a 200 ppm erbium doped yttrium orthoaluminate crystal (Er:YAlO) was performed
in combination with superconducting lumped element resonators. For this crystal we ob-
served strong coupling for relatively small values of the static magnetic field. Additionally,
at large static magnetic fields a cerium impurity was determined.

83





7. Conclusions and Outlook

The goal of this thesis was to show strong coupling between a waveguide resonator and
an erbium spin ensemble. This was demonstrated using a highly over-coupled waveguide
resonator filled with a 50 ppm erbium doped yttrium orthosilicate crystal (Er:YSO). The
magnetic g-factors were determined from measurements combined with simulations. From
the simulated data a crystal orientation of θ ≈ 70◦ was determined for the D2-b plane.
Such an orientation possesses a large AC g-factor, which resulted in strong coupling with
a coupling of approximately 21 MHz. The measurements were performed in the single
photon regime as well as for photon numbers exceeding one million. Complementary,
an inhomogeneous spin linewidth of approximately 18 MHz was observed. For instance,
Probst et al. reported an even smaller linewidth for superconducting lumped element
resonators coupled to an erbium spin ensemble [PRW+13].

The reason for larger values of the inhomogeneous spin linewidth could originate from the
fact, that the complete volume of the crystal is penetrated by the magnetic field. Thus, the
probability of crystal defects [TAC+10] contributing to the inhomogeneous spin linewidth
rises proportional to the probed crystal volume. Furthermore, the local magnetic field may
be disturbed by the rather large coupling coils.

In addition, strong coupling was demonstrated for erbium doped yttrium orthoaluminate
crystal (Er:YAlO) coupled to a superconducting lumped element resonator. In case of
Er:YAlO, temperature dependent measurements of the coupling strength showed that the
coupling drops faster with increasing temperature as compared to the case of Er:YSO
coupled to a waveguide resonator. In the latter case, strong coupling was observed up to a
temperature of approximately 700 mK, whereas for Er:YAlO strong coupling was observed
only up to approximately 100 mK.

Nevertheless, Er:YAlO could be a promising quantum memory candidate, because strong
coupling was achieved using relatively low magnetic fields of about 33 mT. In case of
Er:YSO, much larger magnetic fields are needed to enter the strong coupling regime (≈ 240
mT). The fits yield a coupling strength of approximately 34.6 MHz and an inhomogeneous
spin linewidth of 22 MHz using a superconducting lumped element resonator. Interestingly,
an additional cerium impurity was observed.

The setup can be further extended by providing optical access through additional holes
in the resonator. Thus, the demonstrated experiment is the first step towards a coherent
quantum converter. Supplementary, the ESR experiments with Er:YAlO demonstrate the
big potential of this crystal host, because smaller magnetic fields are needed.
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Appendix

A. CST Microwave Studio (Simple Manual)

In this appendix we will shortly introduce and explain how to use CST Microwave Stu-
dio for simulations according to the electromagnetic behavior of 3D cavities (Hohlraum-
Resonators). For demonstration purposes we use the copper cavity (waveguide resonator)
version 2 as used in this thesis.

When creating a new project with CST Studio Suite, in version 2012 simply the category
Resonator is used, providing all necessary settings. For version 2013 an additional user
interface is presented, where presumably Microwaves & RF, Circuit & Components
and Waveguide & Cavity Filters have to be chosen. Finally the proper solver has to
be used, which is the Eigenmode-Solver.

In order to design now the cavity, we start with the brick tool as shown in figure A.1
(tool-box, red frame) and define the origin of the coordinate system first. Next, the
desired dimensions of the overall cavity are defined, where from the materials library the
specific material of the brick is selected, being in our case copper. Up to now the brick
is completely filled with copper (figure A.1 (a)). To create a Hohlraum-Resonator out of
the brick, additional tools like the cylinder tool (in the same row as the brick tool) are
used. Moving to the Transform WCS button (figure A.1, blue frame), the origin of the
coordinate system indicated by u, v and w has to be changed. Thus, to create a cylindrical
cavity inside the copper brick, the origin of the coordinate system is placed inside of the
cubed model. After setting the dimensions of the cylinder, the program will ask if the
defined region has to be cut out. We confirm this inquiry and replacement of the old
material via a new one, e.g. vacuum.

A cross section through the copper brick enables the view to the cavity, where for this
purpose the tab View is selected and the button Cutting Plane is enabled (figure A.1
(b), green frame). Furthermore, arbitrary orientations of the model could be defined using
the additional tools of the View tab.

To fill the cavity with additional materials, like e.g. dielectrics, the same procedure as
previously described could be used. For example, define the origin of the coordinate
system to the desired position and select a tool from the tool-box as e.g. the cylindrical
tool. Define the dimensions and replace the current material using a new one as e.g.
sapphire. Figure A.1 demonstrates the cross section through the copper brick, where we
replaced the copper material by other materials like sapphire, teflon and vacuum or air
using the steps described previously.
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Copper

Vacuum

Sapphire Teflon

Figure A.1.: CST Microwave Studio user interface. The yellow box is the cross section of a
copper cavity filled with sapphire, teflon and vacuum or air. (a) shows the bulk
copper brick. Different shapes can be modeled using the tool-box (red frame) as
found from the Modeling tab. (b) View tab, which is used to define and adjust
different orientations of the model.

In case of the used material sapphire, no default entry was found. Thus, from the Mod-
eling tab again, such a material could be defined by the user (figure A.2, red frame):

Figure A.2.: CST Microwave Studio material parameters. Using the Modeling tab, new
materials could be defined via the New/Edit button (red frame). At the material
parameters window, the desired properties of the material could be defined (e.g.
sapphire).
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A. CST Microwave Studio (Simple Manual) 93

If for example defining an anisotropic material, the coordinate system (x,y and z) has to
be correlated with the used values defining the anisotropy in the respective direction, or
vice versa.

For the simulation of the corresponding resonant frequencies of the cavity, we change to
the Simulation tab:

Figure A.3.: CST Microwave Studio Simulation tab. The desired frequency range for the sim-
ulation can be defined via the Frequency button (red frame), whereas additional
simulation parameters (gray window) are enabled via the Eigenmode Solver
button (green frame). Simulations using the JDM Method are recommended as
well as the adaptive mesh refinement or the postprocessing loss calculations.

The upper part of figure A.3 shows the Simulation tab, where first of all the desired
frequency range for the simulation is defined (red frame). By clicking onto the Start
Simulation button (green frame), the eigenmode solver window is enabled. A recom-
mended way according to the simulations is the usage of the JDM Method. Using JDM,
the number of modes will be selected automatically in the defined frequency range. In
order to speed up the calculations, losses should be only considered for postprocessing.
The usage of the adaptive mesh refinement is recommended, but could also be adjusted
by the user from the Simulation tab. All other parameters can be used as default, when
starting the simulation with the start button.

After the simulation finished successfully, the corresponding resonant frequencies are found
at the navigation tree (figure A.4, blue frame). Every mode is separated in its electric (e)
and magnetic (h) field components. By clicking onto the corresponding folder (e or h),
the field distribution is indicated by arrows inside the cavity. The color of the arrow
represents the field strength, whereas the resonance frequency is found at the inset of the
model window (figure A.4, red frame).
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Figure A.4.: CST Microwave Studio simulation of an eigenmode with the corresponding mag-
netic field contributions. The simulated eigenmodes are found at the navigation
tree (blue frame) for a predefined frequency range. Every mode folder contains
the electric and magnetic field contributions of the resonance. The resonant fre-
quency is observed from the inset (red frame).

Right clicking on the corresponding folder for the electric (e) or magnetic (h) field enables
further settings as e.g. the animation of the field distribution or additional plot properties.
It is also possible to store the animations as gif data or a movie. For this purpose the
Home tab in combination with the Macro button is used. From the drop down menu we
then use Report and Graphics, save Video.

In order to go further into details using CST, the help section is highly recommended. This
section provides additional training proposals as start-up videos or tutorials with simple
examples.
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B. Design Drawings of Waveguide Resonator Version 1

Figure B.5.: Shop drawings of waveguide resonator version 1
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C. Design Drawings of Waveguide Resonator Version 2

Figure C.6.: Shop drawings of waveguide resonator version 2
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D. Design Drawing of the Sample Holder
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