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Measurement of the effect of quantum phase slips
in a Josephson junction chain
I. M. Pop1, I. Protopopov2,3, F. Lecocq1, Z. Peng1, B. Pannetier1, O. Buisson1 andW. Guichard1*
The interplay between superconductivity and Coulomb
interactions has been studied for more than 20 years now1–13.
In low-dimensional systems, superconductivity degrades in the
presence of Coulomb repulsion: interactions tend to suppress
fluctuations of charge, thereby increasing fluctuations of
phase. This can lead to the occurrence of a superconducting–
insulator transition, as has been observed in thin superconduct-
ing films5,6, wires7 and also in Josephson junction arrays4,9,11–13.
The last of these are very attractive systems, as they enable
a relatively easy control of the relevant energies involved
in the competition between superconductivity and Coulomb
interactions. Josephson junction chains have been successfully
used to create particular electromagnetic environments for
the reduction of charge fluctuations14–16. Recently, they have
attracted interest as they could provide the basis for the
realization of a new type of topologically protected qubit17,18

or for the implementation of a new current standard19. Here
we present quantitative measurements of quantum phase slips
in the ground state of a Josephson junction chain. We tune in
situ the strength of quantum phase fluctuations and obtain
an excellent agreement with the tight-binding model initially
proposed by Matveev and colleagues8.

In superconducting circuits, each electrical element such as an
inductor, a capacitor or the Josephson element can add a degree
of freedom. In the case of small circuits, by applying Devoret’s
circuit theory20, a complete analytical description that takes into
account all degrees of freedom can be obtained. However, when the
circuits contain an increasing number of elements, as for example
Josephson junction chains, even numerical solutions of the problem
become difficult to obtain when taking into account all degrees
of freedom. Nevertheless, our measurements demonstrate that
the ground state of a phase-biased Josephson junction chain (see
Fig. 1a) can be described by a single degree of freedom. Although
the chain is a multidimensional object, the effect of quantum phase
slips can be described by a single variable,m, that counts the number
of phase slips in the chain.

We start by giving a short introduction on the low-energy
properties of a Josephson junction chain analysed in terms of
quantum phase slips8. Let us consider the Josephson junction
chain shown in Fig. 1a. The chain contains N junctions and is
biased with a phase γ . We denote EJ the Josephson energy of
a single junction and EC = e2/2C its charging energy. Here we
consider EJ� EC. Let Qi be the charge on each junction and θi the
phase difference. In the nearest-neighbour-capacitance limit, the
Hamiltonian can be written as:

H =
N∑
i=1

[4EC(Qi/2e)2+EJ(1−cosθi)] ;
N∑
i=1

θi= γ
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Ignoring the charging energy for the moment, in the classical
ground state the phase bias γ is equally distributed on the N
junctions: θi = γ /N , as illustrated by the solid line in Fig. 1b. The
resulting Josephson energy hence reads E0=EJγ

2/2N and the chain
is equivalent to a large inductance. If a phase slip occurs on one of
the junctions, say the jth junction, then θj→ θj+2π. The constraint∑

i θi = γ would be violated after such a phase-slip event if the
phases across all other junctions do not adjust. Therefore, the phase
difference θi over all other junctions changes a little from γ /N to
(γ − 2π)/N to accommodate the bias constraint (see the dashed
line in Fig. 1b). A phase slip on a single junction leads to a collective
response of all junctions. Consequently, the Josephson energy of the
entire chain changes from E0=EJγ

2/2N to Em=EJ(γ −2πm)2/2N
after m phase slips. The classical ground state energy of the chain
consists of shifted parabolae that correspond respectively to a
fixed number m of phase slips (see Fig. 1c). For the special values
γ =π(2m+1), the energies Em and Em+1 are degenerate.

Taking now into account the finite charging energy EC, quantum
phase slips can lift the degeneracy at the points γ = π(2m+ 1).
In the limit of rare phase slips, that is, EJ � EC, the hopping
element for the quantum phase slip can be approximated by21,22:
v = 16

√
EJEC/π(EJ/2EC)1/4e−

√
8EJ/EC . As a phase slip can take place

on any of theN junctions, the hopping term between the two states
|m〉 and |m+ 1〉 is given by Nv . Therefore, using a tight-binding
approximation, the totalHamiltonian for the chain is given by:

H |m〉= Em|m〉−Nv [|m−1〉+|m+1〉] (1)

Figure 1c shows the numerical calculation of the two lowest
eigenenergies of the Hamiltonian (1) for three different ratios
EJ/EC= 20, 3 and 1.3 in the case of a six-junction chain. Figure 1d
shows the corresponding current–phase relation of the chain
in the ground state. The chain’s supercurrent is obtained by
the calculation of the derivative of the ground-state energy Eg:
iS = (2e/h̄)(∂Eg/∂γ ). For large values of EJ/EC, quantum phase
fluctuations are very small (v ∼ 0) and the current–phase relation
has a sawtooth-like dependence with a critical current that is
approximativelyN/π times smaller than that of a single junction of
the chain.We call this regime the ‘classical’ phase-slip regime.When
quantum phase fluctuations increase, that is, EJ/EC decreases, the
current–phase relation becomes sinusoidal and the critical current
becomes exponentially suppressedwithN and EJ/EC (ref. 8).

To measure the effect of quantum phase slips on the ground
state of a Josephson junction chain, we have studied a chain of six
junctions. Our measurement set-up and the junction parameters
are presented in Fig. 2 and Table 1. Each junction in the chain
is realized by a superconducting quantum interference device
(SQUID) to enable tunable Josephson coupling EJ. In this way we
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Figure 1 |Graphic representations describing the effect of phase slips in a six-junction chain, the resulting chain’s energy and supercurrent and the
measurement principle. a, Schematic picture of the phase-biased Josephson junction chain. b, Representation of a phase slip in the chain. The filled
diamonds show the initial configuration. The open diamonds show the phase configuration after a 2π flip of the phase on the third junction θ3. c, Energy
levels of a Josephson junction chain with N=6 as a function of bias phase γ for different ratios EJ/EC. For EJ/EC= 20 (black lines) no splitting is visible at
the crossing points. For EJ/EC= 3 (red lines) a gap emerges that increases rapidly with decreasing EJ/EC. The blue lines show the energy levels for
EJ/EC= 1.3. For each EJ/EC, the two lowest-lying states have been calculated by numerical diagonalization of the Hamiltonian (1). d, Current–phase relation
for the ground state Eg(γ ) for the same EJ/EC ratios as in c. The supercurrent is calculated from the derivative of the energy band: iS= (2e/h̄)(∂Eg/∂γ ). The
chain current is reported in units of the critical current of a single chain junction i0= (2e/h̄)EJ. e, Schematic picture of the chain shunted by the read-out
junction. f, Escape potential for the Josephson junction chain with EJ/EC= 3 in parallel with the read-out junction for three different flux biases φC in the
read-out loop (see Fig. 2). The ground state of the chain clearly modifies the escape potential of the read-out junction.
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Figure 2 |Measurement circuit. The six-SQUID chain is inserted in a
superconducting loop. The flux ΦC created by on-chip coils controls the
phase difference γ over the chain. The flux ΦS through the SQUIDs can be
controlled independently by a second coil. We denote the phase difference
over the read-out junction δ.

can tune in situ the EJ/EC ratio by applying a uniform magnetic
flux ΦS through all SQUIDs, and consequently we can control the
strength of quantum phase fluctuations. For our measurements we
placed this chain in a closed superconducting loop, threaded by the
flux ΦC, containing an extra shunt Josephson junction that is used
for the read-out of the chain state. The flux ΦC enables the control
of the bias phase γ =ΦC−δ over the chain.

We have measured the switching current of the entire Josephson
junction circuit containing both the chain and the read-out
junction. The switching current was determined from the switching

Table 1 | Parameters of the sample: size, capacitance,
normal-state resistance and critical current of the read-out
junction and a single SQUID of the chain.

Read-out junction SQUID at φS =0

SRO
= (121±5)× 103 nm2 SSQ

= (30±2)× 103 nm2

CRO
= 5.8±0.2 fF C= 1.4±0.1 fF

RN
RO
=968±5� RN

SQ
= 3,800±450�

ICRO
= 330±2 nA ICSQ

=83±9 nA

The critical-current variance for the junctions in the chain is estimated to be smaller than 4%.

probability at 50%. The switching probability as a function of bias
current Ibias has a width of ≈20 nA. We apply typically 10,000
bias-current pulses of amplitude Ibias and measure the switching
probability as the ratio between the number of switching events and
the total number of pulses. The current pulses have a rise time of 8 µs
and a total duration of 20 µs. The results of the switching-current
measurements as a function of flux ΦC are shown in Fig. 3. From
these switching-current measurements we deduce the effect of
quantumphase slips on the ground state of the chain.

The measured switching current corresponds to the escape
process out of the total potential energy Utot containing the
contributions of the read-out junction and the chain:

Utot(δ,ΦC)= EJ
ROcos(δ)+Eg(ΦC−δ)−

h̄
2e

Ibiasδ

Here Eg is the ground state of the six-SQUID chain calculated by
solving the Hamiltonian (1). As EJ

RO
� Eg the main component

in Utot is the potential of the current-biased read-out junction
EJ

RO cos(δ) − (h̄/2e)Ibiasδ. Figure 1f shows the escape potential
at constant bias current for three different flux values φC
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Figure 3 |Measured switching current (black diamonds) as a function of
φC over the chain for three different EJ/EC ratios. The measurement noise
for each point is about 0.2 nA. The red lines represent theoretical
calculations for the switching current using equations (3) and (2).

corresponding to three different biasing phases γ over the chain.
Let us point out that the position of the minimum of the potential
Utot is in good approximation independent of the value of the flux
φC. Therefore, the bias phase difference γ over the chain depends
only on the flux φC. As a consequence, the φC dependence of the
measured switching current results from the γ dependence of the
chain’s ground state.

The escape from the potential Utot occurs by means of
macroscopic quantum tunnelling (MQT). The MQT rate for an
arbitrary potential can be calculated in the limit of weak tunnelling
using the dilute instanton-gas approximation23. Within this model,
the escape rateΓ out of thewashboard potentialUtot(γ ) reads24:

Γ =Aexp[−B]

where A and B are given by:

A=

√
h̄ω0

3

8πh̄
σ eI with I = 2

∫
0

σ

√
h̄2Utot(x)
4EC

RO dx

B=
∫ σ

0

√
h̄2ω0

2

16EC
ROUtot(x)

−
1
x

dx

(2)

We have denoted by σ the width of the barrier and by x the
phase coordinate measured from the minimum of the washboard
potential. The plasma frequency is ω0=

√
8EC

ROUtot
′′(0)/h̄, where

EC
RO is the charging energy of the read-out junction.
Knowing the escape rate Γ , we can calculate the switching

probability:

P(Ibias)= 1−exp[−Γ (Ibias)1t ] (3)

The results of numerical calculations and the experimental data
are shown in Fig. 3. The theory fits very well both in amplitude
and shape the oscillations of the measured switching current. Let

EJ /kBT 

ΔI
SW

 /
 i 0

EJ /EC

0.25

0.20

0.15

0.10

0.05

0

0 10 20 30 40

Classical chain (  ∼ 0)

0 0.5 1.0 1.5 2.0 2.5 3.0

Quantum chain

ν

Figure 4 | Comparison between the measured and the calculated
switching-current amplitude as a function of the EJ/EC ratio. Black
diamonds: measured; red open circles: calculated. Note that the
switching-current amplitude is divided by the flux-dependent critical
current of a single SQUID i0, to reveal the effect of quantum-phase
fluctuations. The top curve (blue open circles) shows the theoretical
calculation of the switching-current amplitude in the absence of quantum
phase fluctuations. The lines are guides for the eye.

us point out that we have used the nominal values for EJ and
EC calculated from the characteristics of the sample indicated in
Table 1. The normal-state resistance for a single chain junction
has been deduced from the measured normal-state resistance of
the read-out junction by considering the size ratio between the
two. We evaluate the precision of the determination of EJ and EC
to be in the range of ±10%. This error bar on EJ and EC yields
an uncertainty of ±15% for the phase-slip amplitude Nv . The
eventual presence of junction inhomogeneity or an important effect
of background charges would imply a significantly larger decrease
of the phase-slip amplitude8. The good agreement between theory
and experiment confirms the homogeneity of our junctions. It
excludes a significant contribution of background charges in the
overall shape of the switching curve and demonstrates the collective
nature of the phase-slip events.

From the measurements in Fig. 3, we define the switching-
current amplitude 1ISW as half of the peak-to-peak variation
of the switching current with the flux ΦC. Figure 4 shows the
measured 1ISW and the corresponding theoretical calculations
as a function of EJ/EC. For each measurement, EJ has been
calculated using the flux dependence of the SQUID’s Josephson
coupling: EJ(ΦS) = (h̄/2e)i0(ΦS) with i0(ΦS) = ICSQ cos(πΦS/Φ0).
To distinguish between the suppression of the switching current
that is due to quantum phase fluctuations and the one that
is simply due to the well-known cancellation of the SQUID’s
critical current as a function of flux, we plot the switching-current
amplitude divided by the critical current of a single SQUID i0. We
see that the measured switching-current amplitude follows very
well the predicted theoretical suppression of the switching-current
oscillations in the presence of quantum phase fluctuations. From
our measurements we can also deduce the strength of the quantum
phase-slip amplitude. With decreasing EJ/EC ratio from 3 to 1 the
quantum phase-slip amplitude increases from 0.8 to 2.7GHz. In
addition, in Fig. 4 we have plotted for comparison the calculation
for the switching-current amplitude in the case when quantum
phase fluctuations would be negligibly small: v∼ 0. As expected, we
get a practically flat dependence on EJ/EC.

Further on, the upper x axis of Fig. 4 shows the ratio
EJ/kBT of the Josephson energy with respect to the thermal
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energy at T = 50mK. As EJ � kBT , thermal fluctuations are
excluded to explain the suppression of the switching current with
decreasing EJ/EC. Further measurements (not shown here) reveal
a constant switching-current amplitude and width of the switching
distribution up to a temperature of T =100mK.

We present a detailed experimental characterization of the effect
of quantum phase slips on the ground state of a Josephson junction
chain. These phase slips are the result of fluctuations induced by
the finite charging energy of each Josephson junction in the chain.
The experimental results can be fitted in very good agreement by
considering a simple tight-binding model for the phase slips8. Our
measurements also show that a Josephson junction chain under
phase-bias constraint can behave in a collective way very similar to
a single macroscopic quantum object.

These results open the way for the use of quantum phase
slips in Josephson junction networks for the implementation of a
new current standard, the observation of Bloch oscillations19, the
fabrication of topologically protected qubits25 and the design of new
superconducting circuit elements.

Methods
The circuit was fabricated on a Si/SiO2 substrate and the Al/AlOx/Al junctions were
obtained using standard shadow evaporation techniques. The aluminium oxide was
obtained by natural oxidation in a controlled O2 atmosphere. Room-temperature
measurements on an ensemble of ∼100 junctions revealed a variance of 4% of the
normal-state resistance of the junctions.

The sample was mounted in a closed copper block that was thermally
connected to the cold plate of a dilution refrigerator at 50mK. All lines were
strongly filtered by low-pass filters at the cryostat entrance and by thermocoaxial
cables and π filters at low temperatures.

The switching current ISW of the circuit is obtained by carrying out the
following sequence. We use a series ofM current steps of equal amplitude Ibias to
bias the junction. We count the number of transitions to the voltage stateMSW and
thus obtain the value of the switching probability PSW =MSW/M corresponding to
the applied Ibias. By sweeping the Ibias amplitude and repeating the above sequence,
we measure a complete switching histogram, PSW versus Ibias. The PSW = 50% bias
current is called the switching current of the circuit, ISW.

The principle of the read-out scheme was first implemented by Vion et al.26
and has also been used for the measurement of the ground state of superconducting
atomic contacts27. The choice of the read-out junction critical current ICRO for an
optimal measurement of iS is not straightforward. On the one hand one would like
to have ICRO

� iS, but on the other hand the width of the switching histograms
w increases with ICRO and so do the statistical fluctuations resulting from finite
ensemble size w/

√
M . For reasonable measuring timescales, the number of current

stepsM is limited to values of about 104. If we want to measure supercurrents for
the SQUID chain in the range of 1 nA, ICRO needs to be in the range of 100 nA.
We have used a read-out junction with a critical current ICRO

= 330 nA that
offers a good trade-off.

In our MQT analysis we neglect the effect of dissipation on the escape rate.
Small dissipation can add a pre-factor in front of the exponential in the switching
probability formula (3). However, this factor is independent of ΦC, so it will
change only the offset value of ISW in Fig. 3, but not the shape nor the amplitude
of the ISW oscillations.
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