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Introduction

In this work the transmission properties of Superconducting QUantum Interference Devices
(SQUIDs) in a coplanar transmission line are investigated. We examined the effect of the
coupling between rf-SQUIDs. An rf-SQUIDs consists of a superconducting ring containing a
single Josephson junction.
A current in one SQUID induces a current in neighboring SQUIDs. The extent of the
induced current in the neighboring SQUIDs depends, among other factors, on the distance
between the SQUIDs. We measured the effect of this magnetoinductive coupling on the
transmission of microwaves through a coplanar transmission line along a linear array of
rf-SQUIDs.
Via this method it is tested if a certain measure depends on the periodicity of the SQUIDs,
too. The measure of interest is the power range within which the transmission depends on
the externally applied flux.

Outline
In section 1 the theoretical background for our experiments is explained. This includes
the basic principles of superconductivity. The Josephson relations and the physics of rf-
SQUIDs is explained as well as a derivation of the coupling strength between SQUIDs in a
one dimensional array.
Section 2 concentrates on describing the measurement setup and the measurement procedure.
The results of our measurements are presented in section 3 as well as the general method
of analysis of our measured data. For this purpose the concept of mutual inductance and
coupling coefficient is discussed. Calculations for comparing the currents induced in a SQUID
by the coplanar transmission line or another SQUID are shown. After that the influence of
microwave properties on transmission is explained and an interesting property of SQUID
behavior - the “2-dips-per-Φ0 phenomenon“ - is found and explained. Then the results are
analyzed in different ways and interpreted.
A conclusion and an outlook are presented in section 4.



1 Basics

1.1 Superconductivity

Superconductivity describes a state in which two electrons (i.e. fermions) interact via phonons
and form a Cooper pair (i.e. bosons). All Cooper pairs within one superconductor are
described by a single wavefunction

Ψ(~r) =

√
ns
2
eiΘ (1)

with ns being the number density of Cooper pairs and Θ being the phase [1].
Due to the energy gap in the band structure of superconductors there are no states to scatter
to. As there is no scattering the flow of Cooper pairs is dissipationless [1].
There are certain conditions to be met for electrons to go into the superconductive state.
Superconductivity occurs only below a critical Temperature Tc which is in the single digit
range of the Kelvin temperature scale for most superconductive materials and is correlated
with the size of the energy gap. Furthermore a critical magnetic field Hcm may not be ex-
ceeded. The value of Hcm depends on the Temperature:

Hcm(T ) = Hcm(0) ·
(

1− T

Tc

2)
. (2)

Magnetic Flux Quantization
In a superconducting loop the common wavefunction of all Cooper pairs interferes with itself
after each full loop. Thus the wavefunction has to be single valued after each phase change
of 2π. Therefore only integral multiples of the flux quantum Φ0 = h

2e = 2.07 · 10−15Wb can
penetrate the loop [1].
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1.2 Josephson Effects and RCSJ-Model

The DC- as well as the AC-Josephson Effect occur when two superconductors are connected
through a weak link [1]. We used so called Josephson junctions as weak links. These consist
of a thin isolating layer.
Across the Josephson junction the wavefunctions of both superconductors overlap as shown
in figure 1. Between the wavefunctions there is a phase difference ϕ = θ2 − θ1.

Figure 1: Overlapping wavefunctions of connected superconductors [2].

Equations (3) and (4) show the Josephson relations.
For small currents Is < Ic the DC-Josephson relation (3) describes the superconducting
DC-current Is that can flow through the junction depending on the phase difference ϕ. Its
maximal value is Ic. This can be seen from another perspective: with a fixed DC-current
applied the phase difference will adjust itself according to equation (3).

Is = Ic · sin(ϕ) (3)

~
∂ϕ

∂t
= 2eV (4)

The AC-Josephson relation (4) describes the relation between the voltage V and the
time-dependent change in the phase ϕ. If the total current exceeds Ic then a voltage V
appears across the junction. As the supercurrent, according to equation (3), cannot exceed
Ic there must be a normal current In consisting of quasiparticles flowing in parallel to the
supercurrent in this regime.
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A way to describe the occurrence of the mentioned normal current and therefore the occurring
resistance is the Resistively and Capacitively Shunted Junction model (RCSJ model) [3] in
which a capacitance and a resistor are in parallel to the Josephson junction as shown in figure
2. The capacity C describes the capacitive behavior of the junction, the resistance R the
resistive behavior.

Figure 2: RCSJ circuit diagram.

According to Kirchhoff’s law the total current can be calculated as follows:

Itot = IC + IJ + IR (5)

= C
dV

dt
+ Ic sin(ϕ) +

V

R
(6)

= C
~
2e

∂2ϕ

∂t2
+ Ic sin(ϕ) +

1

R

~
2e

∂ϕ

∂t
. (7)

The last step was made using equation (4). IC is the current through the capacitance C, IJ is
the current through the Josephson junction J and IR is the current through the resistance R.
V is the voltage across the parallel combination of ideal junction, capacitance and resistance.
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1.3 rf-SQUIDs

A Superconducting QUantum Interference Device (SQUID) consisting of a superconducting
ring containing a single Josephson junction is called a rf-SQUID (see figure 3).

Figure 3: Sketch of a rf-SQUID [1].

In a rf-SQUID the phase difference across the Josephson junction is equal to

ϕ = 2π
Φ

Φ0
(8)

with the total flux through the ring Φ and the flux quantum Φ0 [1].
Because of the induced screening current Isc the total flux differs from the externally applied
flux Φe:

Φ = Φe − LIsc. (9)

As the screening current passes through the Josephson junction it behaves according to the
Josephson relation in equation (3). Substituting (8) in (3) yields

I = Ic sin

(
2π

Φ

Φ0

)
. (10)

Applying this new equation to equation (9) yields

Φe = Φ + LIc sin(2π
Φ

Φ0
). (11)

This equation gives us the implicit relation between external flux and total flux in the loop
shown in figure 4 for βL > 1. This parameter is defined as the ratio βL =

Lgeom

LJ
with the

geometric inductance Lgeom and the Josephson inductance LJ , which is defined in equation
(13). The value βL of a SQUID strongly influences its behavior.

When, in figure 4, the externally applied flux through the loop is increased starting from
Φe = 0 there is an induced screening current partially cancelling out the applied flux. In
case of a solid ring without a junction the induced current would cancel out the applied
flux completely. Due to the presence of the junction the cancellation is only partial because
the magnetic field can penetrate into the ring’s interior [1]. At a critical value Φe = Φec

(point D), however, the system jumps to the next quantum state (point A) because it is now
energetically more favorable that one flux quantum enters the loop. At this point A the
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Figure 4: Implicit relation between Φ and Φe for βL > 1 [1].

total flux Φ through the loop becomes larger than the external flux. To meet equation (11)
the screening current has to change its direction.
From point A there are two different ways the system can develop.
If the external flux is increased further the external flux will reach the value Φe = Φ0. There
the total flux is also Φ0 and according to equation (10) the current is I = 0A. Therefore the
system is effectively in the same state as in the origin. With further increase of the applied
flux the system will go through this process with period Φ0.
If, however, the external flux is decreased from point A the jumps will start from points anal-
ogous to point B. Thus, a cyclic variation of the external flux is accompanied by a hysteresis
loop CDABC. The area of the loop is proportional to the energy dissipated in the junction [1].

As we used SQUIDs with βL < 1 the hysteretic behavior described above does not occur in
our SQUIDs. For different values of βL the behavior looks as shown in figure 5.

Figure 5: Implicit relation between Φ and Φe for different values of βL (βL is called λ in this
figure from reference [4]).

In the case of a sinusoidally alternating external flux the rf-SQUID can be interpreted as a
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regular LC-circuit with the resonance frequency ω = 1√
LtotC

. In a rf-SQUID Ltot is

Ltot =
LgeomLJ
Lgeom + LJ

(12)

with the geometric inductance of the loop Lgeom and the Josephson inductance LJ which is

LJ = V ·
(
∂I

∂t

)−1

=
~
2e
· 1

Ic cos(ϕ)
. (13)

The last step in equation (13) is derived using the first and second Josephson relation (equa-
tions (3) and (4)).
From equation (13) it becomes clear that the resonance frequency of a rf-SQUID is tunable
due to the tunability of LJ , i.e. of Ltot. From equations (12) and (13) one can see that the
total inductance becomes Ltot ≈ Lgeom at cos(ϕ) ≈ 0. This is the case if ϕ ≈ π

2 or ϕ ≈ 3π
2 .

As the current through the junction is I = Ic sin(ϕ) it means that Ltot ≈ Lgeom holds for
currents |I| ≈ Ic. Why this is relevant will be explained in section 3.
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1.4 Metamaterials

Metamaterials are typically constructed of ‘atoms’ that have an engineered electromagnetic
response. The properties of the artificial atoms are often engineered to produce non-trivial
values for the effective permittivity and effective permeability of a lattice of identical atoms.
Such values include relative permittivities and permeabilities that are less than 1, close to
zero, or negative [5].

The first metamaterials were made of an array of split-ring resonators (SRRs). More recent
SQUID metamaterials are made of an array of SQUIDs, as shown in figure 8. Both kinds of
metamaterials only couple to a magnetic field.

Conventional metamaterials utilize SRRs to influence the dielectric properties by manipu-
lating the effective plasma frequency of the medium.
Substantial ohmic losses in the radio frequency range are one of the key limitations of
conventional metamaterials. In contrast to normal metals, superconducting wires and SRRs
can be substantially miniaturized while still maintaining their low loss properties [5].

SQUID metamaterials consist of a regular array of SQUIDs. A SQUID can be seen as a
quantum analog of the split-ring resonator in which the classical capacitor is replaced by a
Josephson junction [5]. This has the main advantage of tunability of the Josephson inductance
(see section 1.3).
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1.5 Coupling Strength between rf-SQUIDs

The basic notion of the transition from the dynamics of one SQUID to the relative
permeability of an array of SQUIDs was shown by Lazarides and Tsironis [6]. It is briefly
described in the following.

The normalized flux f trapped inside a SQUID is

f = fext + βi (14)

with f = Φ
Φ0

, fext = Φext
Φ0

, β = βL
2π ≡

LIc
Φ0

, i = I
Ic

. I is the current circulating in the ring and
L is the geometric inductance of the ring.

The dynamics of the normalized flux is governed by the equation [6, 7]

d2f

dτ2
+ γ

df

dτ
+ β sin(2πf) + f = fext. (15)

Here is γ = Lω0
R the dissipation coupled to the SQUID, τ = ω0t is the time normalized

to the resonance frequency ω0 = 1√
LC

. R and C are as introduced with the RCSJ model.

Furthermore it is fext = fe0 cos(Ωτ) with fe0 = Φe0
Φ0

and Ω = ω
ω0

.

Lazarides et al. continue by investigating the special case for a frequency close to the reso-
nance frequency, i.e. Ω ≈ 1, in the nonhysteretic regime βL < 1.
They solve the differential equation for the flux

f = f0 cos(Ωτ + θ) (16)

in the loop with

f0 =
fe0 −D√

γ2Ω2 + (1− Ω2)2
, θ = tan−1

(
−γΩ

1− Ω2

)
. (17)

Here θ is the phase difference between f and fext.

D(fe0) = −2
∞∑
n=1

[(−1)n/nπ]Jn(nβL)J1(2πnfe0) is a complicated sum, the form of which is

not important for our purpose. Lazarides et al. derive it via a Fourier-Bessel series in order
to replace the [β sin(2πf)] term in equation (15).

Additionally, another special case is investigated, namely the regime with γ � 1 and Ω not
very close to the resonance. There holds θ ≈ 0.
For γ = 0, i.e. no dissipation at all, the solution is

f = ±|f0| cos(Ωτ), |f0| =
fe0 −D
|1−D2|

. (18)

The plus (minus) sign corresponds to a phase shift of 0 (π) of f with respect to fext. The
plus sign is obtained for Ω < 1, the minus sign for Ω > 1. Therefore the flux f is either in
phase (+ sign) or in anti-phase (- sign) with fext depending on Ω [6].

From the regular description of the magnetic field strength B in matter

B = µ0(Hext +M) ≡ µ0µrHext (19)
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with the external magnetic field Hext, the permeability constant µ0 and the relative perme-
ability µr. Inserting for the magnetization M = AI

V = πa2I
d3

with the radius a and the area of
each SQUID A = πa2 and rearranging for µr we get

µr = 1 +
πa2

d3

I

Hext
(20)

where d is the periodicity of the SQUIDs in the array and I is the current in the SQUID
loop. This is the equivalent description for an array of rf-SQUIDs that form a metamaterial
with a specific µr.
Using equations (14) and (18) the current I in equation (20) can be replaced. It follows

µr = 1 + π2µ0a

L

(a
d

)3
(
±|f0|
fe0
− 1

)
. (21)

The prefactor F̃ = π2 µ0a
L

(
a
d

)3
depends on the periodicity d between neighboring SQUIDs

and can therefore be used as a measure for coupling strength.

12



2 Measurement setup

2.1 General setup

The setup is shown in figure 6. The setup of our experiment consisted of an Anritsu Vector
Network Analyzer (VNA), a chip sample with one dimensional rf-SQUID arrays on it and a
superconducting coil providing the constant magnetic field. The sample was fixed at the front
end of the short coil with an orientation such that the coil’s magnetic field penetrated the
SQUIDs’ area perpendicularly. The coil current was supplied by an external current source.
During the experiments the sample was cooled down to T = 4.2K < Tc,Nb. The critical
temperature of niobium is Tc,Nb = 9.25K [1].

2.2 Measurement procedure

During our experiments the VNA sent a microwave signal from point 1 (output) through the
sample to point 2 (input). On the way there, the signal passed a cold −30dB attenuator
to reduce its power at the sample. This was necessary because the VNA could not supply
the low power we needed. The signal was coupled to the coplanar transmission line on the
chip. The magnetic component of the field around the coplanar transmission line coupled
inductively to the SQUIDs.
Because of this coupling a current was induced in the SQUIDs. The SQUIDs in turn coupled
with each other magnetoinductively. Because it requires energy to drive the induced current
oscillations the amplitude of the microwaves in the central line decreases significantly at
resonance. The exact conditions for the energy dissipation are described in chapter 3.5.
The VNA uses an oscillator to produce a frequency sweep over time which was supplied to
our sample. The electronically controlled frequency sweep allowed automatic measurements
over a preset frequency range. The signal transmitted through the sample was measured
by the VNA. A Python script running on the PC was used as control unit for setting the
parameters at the VNA. The microwave power and frequency were varied.
Furthermore the external magnetic flux was varied in discrete steps between each frequency
sweep by changing the current Ib through the coil.
Before the microwave signal arrived at the VNA point 2 it was damped again by a cold
−10dB attenuator to reduce reflections and afterwards amplified by a +30dB amplifier at
room temperature.

Due to the oscillatory nature of the magnetic field of the microwave signal the average
external magnetic field at the sample was given only by the magnetic field due to the coil.
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Figure 6: Sketch of the setup.
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2.3 Coplanar transmission line

A sketch of our symmetric CoPlanar Transmission Line (CPTL) together with the rf-
SQUIDs is depicted in figure 7.
A CPTL is characterized by conductor planes, which are placed on top of the substrate. The
symmetric CPTL consists of a central line and two ground planes [8]. Our central line has
a width of w = 112µm and a thickness of h = 300nm. There is a 82µm wide gap, from the
edge of the central line to each of the ground planes, for the SQUID arrays to be placed in.
All conductor planes consist of a niobium layer on top of a Si-substrate with permittivity
εr = 11.9 [8].
For a CPTL the effective permittivity [8] has to be applied, which is defined as εr,eff = εr+1

2 .
The electric field lines of a CPTL are between the central line and the ground planes.
The magnetic field lines surround the central line and go through the substrate in the gap
between the central line and the ground planes [8].

We assume that all the SQUIDs in the array are exposed to a similar magnetic field caused
by the CPTL. This is satisfied if the wavelength λ of the microwaves on the CPTL is greater
than the length of the array larray. To be specific the condition λ

2 � larray has to be met.
To evaluate this we estimate the wavelength using the approximation

λ =
c

neff · f
= 6.9mm (22)

with an effective refractive index neff =
√
εr,eff , the speed of light c and the operating

frequency f . The chip with the arrays on it has a length of lchip = 5mm. However, the
SQUIDs do not fill the entire length of the chip.
The arrays with periodicities of 55µm and 90µm only have lengths of larray,55 = 0.82mm and
larray,90 = 1.3mm. Thus the above condition is met.
The array with the largest periodicity (225µm) has a length of about larray,225 = 3.2mm.
This array is much longer than the other two arrays. Thus for this array holds larray ≈ λ

2
and the above condition is not met. This means that the SQUIDs in this array are not all
exposed to a similar magnetic field and are not driven by a similar force.
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2.4 Sample layout

Each chip we used had three transmission lines on it (see figure 8). In the two gaps above
and below along each transmission line, a one-dimensional array of rf-SQUIDs was placed.
Figure 7 shows a sketch of such a transmission line. In the middle there was the central line,
above and below it was one SQUID array in each case. Respectively further outward was the
ground plane. The chip substrate was made of Si. The SQUIDs and the transmission line
were made of niobium. The Josephson junction in the SQUIDs was made of Nb-Al2O3-Nb
tri-layers. The dimensions of the central line were: width w = 112µm, height h = 300nm
and length l = 5mm. The gap between the central line and the ground plane was g = 82µm
wide.
A sketch of the SQUIDs used in our experiments is shown in figure 9. Our SQUIDs had a
hysteresis parameter of βL = 0.9 < 1 [3].
As area of the SQUID loop an effective area has to be used: A = Aeff = 35µm · 37µm.
This effective area is larger than the free space inside the loop because flux focussing has
to be taken into account because in superconductors the magnetic field is pushed out of the
material. Therefore the flux through the hole is greater than the magnetic field times the
area of the hole. As an estimate we assumed that the effective area includes the free space
inside the loop and half of the area of the SQUID material because half of the flux through
the SQUID material will be pushed inside the loop and half of the flux will be pushed outside
the loop.

Figure 7: Design sketch of the sample [9].

The preparation of the samples was a process requiring several steps. First, the chip had
to be glued to a copper Portable Circuit Board (PCB). After the glue had dried, each
transmission line on the chip was bonded with thin wires to the corresponding area on the
PCB. The gold pads, on the left and right side of each transmission line, were used for
bonding (see figure 8).
As each transmission line had a separate connection to the PCB it allowed us to investigate
each transmission line separately.

An original design sketch of a chip is shown in figure 8. The periodicity of the SQUIDs is
different for each of the three transmission lines. We used two different chip designs and
gathered data from three different transmission lines with periodicities of 55µm, 90µm and
225µm.
At the bottom of each chip there were dc test structures which are magnified in figure 10.
The test structures incorporated a single dc-SQUID on the right as well as a single junction
on the left. We used them to check the quality of the chip and to find fabrication defects.
We did this by measuring the current-voltage characteristics (I-V curve) of the junction
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and calculating the critical current Ic to make sure that it met the specified value. This
procedure is explained in section 3.1.

Figure 8: Chip with SQUID arrays on it [9].
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Figure 9: SQUID array sketch with dimensions in µm.

Figure 10: DC test structures with bonding pads - on the left: a single junction; on the right:
a DC-SQUID [9].
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3 Results

Figure 11: Simulation of transmission [dB] over a wide input power and frequency range [10].

The phenomenon we investigated was first assumed in a simulation [10] like the one in fig-
ure 11.

It illustrates the behavior of a SQUID transmission line with four rf-SQUIDs over a wide
power and frequency range. As input for the simulation the original design parameters of
our SQUIDs were used. The SQUIDs had a periodicity of 90µm. The figure shows the
transmission in color code depending on the applied power and frequency. The color bar
marks the transmission in units of [dB].
There are two different behaviors in the picture with a gradual transition in between. At low
power values there are several narrow bands. There are different bands because the SQUIDs
have slightly different resonance frequencies, which is the case on our chip due to fabrication
tolerances, as is explained below. This effect was also taken into account in the simulation.
The bands all move to lower frequencies at higher power values and furthermore move
closer together at higher power values. At a certain point on the frequency axis all bands
unite and form a deep dip. This point corresponds to the input frequency ω = 1√

LC
, with

L = Lgeom = 58pH and C = 1.8pF being the inductance and capacitance of the SQUID
loops without the Josephson junction, that is of a simple closed metal ring. This dip is
tapered along the frequency axis towards lower power values and expands towards higher
power values.
All the SQUIDs have very similar Lgeom and C and therefore a very similar resonance
frequency at high power values. As the area of the Josephson junction, however, is subject
to greater fabrication differences the critical current, the capacity and the inductivity of the
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junctions varies between the SQUIDs. Because of this the SQUIDs have different resonance
frequencies at low power values.

Running several simulations at various external flux bias values one can see that the power
at which the small bands unite and the big dip begins, depends on the externally applied
flux. That is, it moves up and down with period Φ0. The goal of our experiments was to
investigate the influence of the periodicity of the SQUIDs on the power interval in which
flux dependence occurs, i.e. in which the big dip moves up and down when changing the
applied external flux.
The actual analysis of our experiment however will be carried out in a power versus flux bias
diagram.

The simulation in figure 11 is very instructive as it shows the general resonance behavior of
the SQUIDs over a much wider power range than we could measure in our experiment.
A corresponding diagram of our experimental data is shown in figure 12. It illustrates the
data of a SQUID array with periodicity d = 225µm at the external flux Φe = 0 · Φ0. The
numbers at the color bar indicate much lower transmission than in the simulation. This
is due to the fact that there are only four SQUIDs placed in each transmission line in the
simulation, whereas there are fifteen in each transmission line in the real measurement.
Furthermore attenuators were used in the real measurement that are not part of the
simulation. As this also lowers the transmission the standardization differs between the two
figures.
What can also be seen is that the dip goes to much lower power values in the real measure-
ment. This is probably due to an offset in external flux, due to which Ib = 0A does not
represent Φe = 0 · Φ0 in our measurement. However, as we cannot specify the offset in the
flux bias, we will use Φe = 0 · Φ0 as if it corresponded to Ib = 0A in the following.
In figure 13 the same measurement is shown as above but at the external flux Φe = Φ0

4 . It
can be seen that the dip is moved up towards higher power values here.
As our experiments were carried out at relatively high power values the average currents at
which we operated were I ≈ Ic. Therefore Ltot ≈ Lgeom holds in all our considerations. This
means that we can only observe the big dip in our measurements. Its form and position
in figures 12 and 13 is as expected in the considerations above. The reason we measured
at such high power values was that the VNA could not operate at lower power values. To
reduce the power at the sample external attenuators were added to the setup. With too
much attenuation, however, the signal to noise ratio would have become too bad.

The power range used in the measurements was such that the interval in which the flux
dependence of the transmission occurred could be observed. This means a power range at
the VNA from −35dBm to about 0dBm which translates to power values at the sample
between −65dBm and −30dBm.
The frequency was varied in a narrow range of up to 300MHz around the resonance frequency
of about fres = 17GHz (for fres see figures 18 and 19) of the SQUIDs.

The bias current Ib of the coil was chosen between −3µA and 2µA. The range of the corre-
sponding magnetic field caused a variation of the flux through the SQUID loop of about two
flux quanta.

20



16.85 16.9 16.95 17 17.05 17.1

−60

−55

−50

−45

−40

−35

−30

Frequency [GHz]

In
p

u
t 

P
o

w
e

r 
[d

B
m

] 

 

 

−70

−68

−66

−64

−62

−60

−58

−56

−54

−52

Figure 12: Input Power at the Sample vs. Frequency for SQUID periodicity d = 225µm at
the external flux Φe = 0 · Φ0 (calculated from the bias current through the coil).

Figure 13: Input Power at the Sample vs. Frequency for SQUID periodicity d = 225µm at
the external flux Φe = Φ0

4 (calculated from the bias current through the coil).
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3.1 Critical current Ic of a Josephson junction

Figure 14: I-V measurement of a Josephson junction. With fits f(V ) = 2.5V − 0.6, g(V ) =
2.5V + 0.4, h(V ) = 36.3V − 94.6, i(V ) = 34.7V + 88.1.

For measuring the I-V curve of a Josephson junction within our test structures we sent a
current through a junction and measured the voltage as a function of the current. This was
done using a 4-point measurement. The measured data can be seen in figure 14 together
with the fits made for the following calculations. The hysteretic behavior, the gap voltage
Vgap and the resistive branch are indicated.

Starting at Vgap Ohm’s law I = V
R applies as can be seen in the I-V curve in figure 14.

Vgap is the voltage at which the junction behavior passes into the normal resistive state. R is
the inverse of the slope of the I-V curve above Vgap. With Gnuplot linear fits to the measured
data in the appropriate intervals were made. We get Vgap = 2.6mV by calculating the null of
h(V ) and i(V ) and taking the mean value. R = 401.4Ω is the inverse of the mean value of
the slope of f(V ) and g(V ).
Using the Ambegaokar-Baratoff formula [11]

Ic =
π

4
· Vgap
R

= 5.0 · 10−6A (23)

we get Ic = 5.0 · 10−6A. The junctions were actually designed for Ic = 8.0 · 10−6A. This
discrepancy is due to fabrication tolerances but was consistently observed for all measured
junctions.

The Stewart-McCumber parameter βc [3] of the measured junction as for all our junctions is

βc = 2π
IcR

2C

Φ0
= 4.4 · 103. (24)

with C = 1.8pF. Because of βc � 1 the I-V curve has a hysteretic behavior [3].
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3.2 Mutual inductance M21 and coupling coefficient F̃

3.2.1 Mutual inductance calculated with FastHenry

To compare the coupling coefficient (as introduced in chapter 1.5) to another measure of
SQUID interaction namely the mutual inductance between two SQUIDs, the inductance
extraction software FastHenry was used. The mutual inductance is defined in equation (26).
FastHenry was supplied with the physical dimensions of the array as shown in figure 9.
The program calculated via a finite element method the mutual inductances between the
SQUIDs for the specified dimensions and the different periodicities.
The resulting mutual inductances M are displayed in table 1. The mutual inductance, by
definition, has a negative value whereas the coupling coefficient has a positive value. It
is useful to compare the absolute values. The absolute values of the mutual inductances
calculated with FastHenry are plotted in figure 15 versus the distance d of the SQUIDs, i.e.
their periodicity. The red plus signs in this figure show the mutual inductance between two
nearest neighbors and the blue crosses show the mutual inductance between two next but
one nearest neighbors. M1 is the fitted curve for the mutual inductance between nearest
neighbors (solid red line), M2 is the fitted curve for the mutual inductance between next but
one neighbors (solid blue line). The data points were calculated by FastHenry, the fits were
calculated using Gnuplot.

This figure shows that the dependence of the absolute value of the mutual inductance M on
the distance d between the SQUIDs is well described by a polynom of the form M = c · d−3

with some positive constant c. As the mutual inductance becomes smaller at greater
distances the current induced by one SQUID in another SQUID also becomes smaller at
greater distances.

Because of the M ∝ d−3 dependence the absolute values of the mutual inductance for the two
different cases differ the most at low periodicities. In relative values the mutual inductance
between two next but one neighbors is always just M2

M1
= 2.4·10−8

2.6·10−7 ≈ 9.2% of the mutual
inductance between two nearest neighbors. Therefore the coupling effect of the next but one
neighbor is negligibly small in comparison with the nearest neighbor.

Table 1: Mutual Inductance depending on the SQUIDs distance (calculated with FastHenry)

Mutual Inductance M21 in 10−13H
d [µm] nearest neighbor next but one neighbor

55 -16.53 -1.479
70 -6.70 -0.689
90 -2.84 -0.314
110 -1.48 -0.169
120 -1.12 -0.129
140 -0.69 -0.080
160 -0.45 -0.052
175 -0.34 -0.040
190 -0.27 -0.030
210 -0.19 -0.022
225 -0.16 -0.018
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3.2.2 Calculation of the coupling coefficient F̃

The derivation of the dependence of the coupling constant F̃ on the period d of the SQUIDs
was already shown in chapter 1.5. The resulting dependence was

F̃ = π2
(
µ0
a

L

)(a
d

)3
∝ d−3. (25)

F̃ is calculated for a ring shaped SQUID. The radius a = 20.3µm is chosen such that the
area of the ring shaped SQUID matches the actual area of our SQUIDs. Furthermore the
geometric inductance of our SQUIDs is L = 5.9 · 10−11H
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Figure 16: Coupling coefficient F̃ depending on the SQUIDs distance according to equation
(25). F̃ = 3.5 · 10−14m3 · d−3 with d in [m].
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3.2.3 Comparison of the results

The mutual inductance as well as the coupling coefficient are both measures for the coupling
strength.

As both figures (15) and (16) show the same dependence on the distance (∝ d−3) the
conclusion can be drawn that there is a connection between the coupling coefficient and the
mutual inductance. Their information is analogous. In fact the difference is just a constant
factor. Therefore it holds F̃ = z ·M21 with z = 1.4 · 10−7 1

H for nearest neighbors.
The coupling coefficient on the one hand is derived from theoretical calculations using
reference [6], the mutual inductance on the other hand can be measured experimentally or
via a simulation, as we did.
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3.3 Induced current in a SQUID

3.3.1 Current induced by another SQUID

The definition of the mutual inductance M21 is

M21 =
Φe2

I1
(26)

where I1 ∈ [0,Ic] is the current in a SQUID 1 in figure 9 and Φe2 is the resulting external flux
through the neighboring SQUID 2. Rearranging the equation it follows

Φe2 = M21 · I1. (27)

In order to calculate the maximum SQUID-on-SQUID influence we will take the maximum
value for the current I1 = Ic. As already described, the mutual inductance M21 of two nearest
neighbor SQUIDs was calculated with FastHenry.
With the well known relation derived in chapter 1.3

Φe2 = Φ2 + L · Ic · sin
(

2π
Φ2

Φ0

)
(28)

with the geometric inductance L and the critical current Ic we can determine the effective flux
Φ2 through the second SQUID. For doing this one can make the approximation sin(a·x) ≈ a·x
because Φ2 � Φ0 holds. Solving equation (28) after the approximation yields

Φ2 =
Φe2

1 + LIc
2π
Φ0

. (29)

With the values for Φe2 from equation (27) using the respective values of M21 for the different
SQUID periodicities we get the values for Φ2 and thus we get the induced currents via

I2 = Ic sin

(
2π

Φ2

Φ0

)
(30)

as shown in table 2 which shows the induced currents I2 and the mutual inductances M21 used
for calculating Φe2 for each periodicity. For the calculation were also used L = 5.9 · 10−11H
and Ic = 5µA.

Table 2: Mutual Inductances M21 and induced currents I2 calculated for three periodicities
d using equation (30)

d [µm] 55 90 225

M21 [H] 1.7 · 10−12 2.8 · 10−13 1.6 · 10−14

I2 [A] 6.6 · 10−8 1.1 · 10−8 6.3 · 10−10

I2/Ic 1.3 · 10−2 2.3 · 10−3 1.3 · 10−4
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3.3.2 Current induced by the central line

Now, how many flux quanta are induced in any given SQUID by a current flowing through
the central line?
We can calculate this analogously to chapter 3.3.1. For this we need the mutual inductance
Mcl,s = 5.2 · 10−12H between the central line and a SQUID. This mutual inductance was
calculated with FastHenry. Furthermore we need the current Icl through the central line
which is approximately calculated from P = U · I = Z · I2 with a typical input power
P = −50dBm = 10−8W and the impedance Z = 50Ω of the central line.

Icl =

√
P

Z
=

√
10−8W

50Ω
= 1.4 · 10−5A. (31)

With this we can calculate the external flux Φes from the central line through the SQUID

Φes = Mcl,s · Icl. (32)

Proceeding with Φes analogously to chapter 3.3.1 yields the induced current
ISQUID = 4.6 · 10−6A = 0.93 · Ic.

3.3.3 Comparison of the results

The induced current by another SQUID for the smallest distance 55µm in table 2 is about
seventy times smaller than the induced current by the central line at the input power P =
−50dBm. This suggests that the effect of coupling SQUIDs is small even for the closest
distance. For the greater distances 90µm and 225µm the induced current is only one thousand
times and ten thousand times smaller than the induced current by the central line.
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3.4 Flux through a SQUID loop caused by Ib

Now, we calculate what bias current Ib in the coil is needed to cause a magnetic field B that
creates a flux Φ = Φ0 in the SQUID loop. The calculation is rather straightforward:

Φ = ~B · ~A = BA (33)

with the effective area of the loop A = 1.3 · 10−9µm2 and the magnetic field ~B. The sample
is positioned at one end of a short coil in such a way that the magnetic field of the coil
penetrates it perpendicularly. The superconducting coil’s resistivity is R = 0Ω. Its length is
L = 0.01m and N = 1000.
The corresponding magnetic field is [12]

B(z = ±L/2) =
µ0 ·N · Ib

2L
· L√

R2 + L2
. (34)

Solving equation (34) for Ib and substituting Φ = Φ0 and B from equation (33) we get

Ib =
2L

µ0 ·N
·
√
R2 + L2

L
· Φ0

A
= 2.5 · 10−5A. (35)

Therefore the current Ib = 2.5 · 10−5A is expected to cause one flux quantum Φ0 to thread
the area of a SQUID. We will see in chapter 3.6 that this is roughly the value we found
experimentally.
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3.5 Influences on transmission

When a harmonic oscillator is driven by an external force, the amplitude of the oscillations
depends on the amplitude and the frequency of the driving force.
In the same way the currents in the SQUIDs can be seen as LC oscillators that are being
“driven“, i.e. induced, by the external flux threading them. This external flux stems from
a magnetic field around the central line that penetrates the SQUIDs perpendicularly. Thus
the microwaves supply the energy for driving the oscillations. Because of this the microwaves
significantly lose energy at resonance. Therefore there is a dip in transmission.
As the amplitude of the induced current is maximal close to the resonance frequency of the
SQUIDs the power transmission through the transmission line is minimal there. Furthermore
the transmission will be smaller for higher power values through the central line as this
power is to be seen as the driving force for the magnetic field through the SQUIDs.
Considering the specific behavior of currents in SQUIDs we have to take into account that
the current that can be induced in a SQUID in the superconducting state is dependent on
the flux threading it, as seen in equation (10).

Evidence for the above expectations is given in the following.
Figures 18 and 19 show the transmission through the transmission line for SQUIDs with a
periodicity of 225µm. The flux through the loop is the same in both diagrams. The bias
current through the coil is Ib = −1.8µA. The dip in transmission is deepest for frequencies
close to the resonance frequency of about 17GHz. In addition, the dip in transmission
is deeper at higher input power (e.g. −29dBm in figure 19) than at lower input power
(e.g. −39dBm in figure 18). Far away from the resonance frequency there is no significant
difference between different power values.
The difference between the highest and the lowest transmission value over the measured
frequency interval will be called the ”depth of the dip in transmission” in the following.
The errors of our measurements can be analyzed best in figures 18 and 19. The curves
are very smooth and do not show large irregularities. The smoothness of the curves indi-
cates a low noise level and shows that it is possible to analyze the measured data qualitatively.

In figure 17 the transmission is shown color coded in dependence of the frequency of the
microwave signal as well as in dependence of the external magnetic flux bias, i.e. the coil
current Ib. The periodic behavior of the transmission in flux is clearly visible. We expected
these results from our considerations above. They hold true for all used SQUID periodicities.
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Figure 17: Color coded transmission S21 [dBm] for a SQUID periodicity of 225µm at the
input power P = −33.5dBm at the sample.
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Figure 18: Transmitted power for a SQUID periodicity of 225µm at the input power
P = −39dBm at the sample.
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Figure 19: Transmitted power for a SQUID periodicity of 225µm at the input power
P = −29dBm at the sample.
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3.6 Transmission results for different periodicities

Figures 20, 21 and 22 show the experimental results for the periodicities d = 55µm,
d = 90µm, d = 225µm. At each point of the power versus flux bias plane the minimal and
maximal transmission was determined over the measured frequency interval. The difference
between this minimal and maximal transmission, i.e. the depth of the dip in transmission,
was then calculated and is shown color coded.

The power vs. flux bias diagrams have a flux axis (in units of Φ0) which was calculated from
the actually set values for the current Ib. The flux axis was rescaled using the conversion
factor

Φe =
Ib

2.5 · 10−5A
· Φ0 (36)

with the actually set value for the current Ib. The value 2.5 · 10−5A is derived in section
3.6.1. The same conversion factor is used for all three diagrams because the same periodic
behavior of the transmission in flux is expected and confirmed by the figures.
Equation (36) yields Φe = 0 ·Φ0 for Ib = 0A. As can be seen in the figures, however, there is
an offset in the external flux.

In the three diagrams there are dark horizontal lines drawn. Between these lines, i.e.
between the two power values at which the lines are drawn, the depth of the dip in
transmission varied more, depending on flux bias, than the specified limit value. This
limit value means that the deepest dip at a certain power has to be 5.25dB deeper than
the flattest dip at the same power. In this case the transmission at the corresponding
input power is considered flux dependent. The chosen limit value in all three figures is 5.25dB.

Following a line along a constant power over all flux bias values, the power values at which
the colors do not change much, have only a little change in the difference between maximal
and minimal transmission. This means that the depth of the dip in transmission is constant.
Therefore the induced oscillating currents are neither much excited nor much inhibited
by the externally applied flux from the coil. It is noticeable that the depth of the dip in
transmission depends on the external flux only in a certain range of power values. For power
values very high or very low there is no dependence on the external flux. Let us analyze
three different power ranges on the basis of figure 23. The blue and yellow area in this figure
show the dip in transmission, as was explained for figures 12 and 13. With changing flux
bias values the dip in this illustration moves up and down, along the input power axis, with
period Φ0. If the dip moves up it means that the blue and yellow area do not reach as far
down to low power values as before. Therefore there is a higher transmission now, in the
newly red area, than before. Thus the depth of the dip in transmission has changed in just
that area in which the colors have changed. If the dip in the figure moves down the same
thing happens vice versa.
However, this dip only moves within a certain power range. Therefore if one measures at a
power corresponding to line number 1 in figure 23 there is no flux dependence measurable.
This is the case because the dip does not move that far up and the transmission is thus
relatively constant for such high power values. The same thing happens for power values
corresponding to line number 3. The dip never moves that far down. If one measures at
power values corresponding to line number 2, which lies within the power range in which
the dip moves, there is a flux dependence detectable because transmission changes with the
externally applied flux.
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It is interesting, that if one lowers the input power even further, far below the power values
at which we measured, there comes a point at which a flux dependence of transmission is to
be seen again. This can be seen in the simulation in figure 11. At the lowest power values
there are several bands corresponding to the different resonance frequencies of the single
SQUIDs. As we have seen in section 1.3 the resonance frequency of a SQUID is tunable
due to the flux dependence of the Josephson inductance. Thus, if one changes the flux, the
resonance frequencies will be different and therefore the narrow bands will shift towards
different frequencies.
When looking at the simulation, one can see that the narrow bands go from the lowest
power all the way up to the power at which the big dip begins. This means that there is a
flux dependency to be expected in all of that range. Because the dip is not very deep in the
intermediate power region, however, we could not measure the flux dependency there.

There are some irregularities in figures 20, 21 and 22.
As the flux bias was varied in wider steps in the measurement for d = 55µm, figure 20 shows
a relatively low resolution compared to the respective figures of the other periodicities.
Despite this one notices some very regularly appearing horizontal stripes. They do not seem
to have a physical meaning but seem to stem from errors in the measurement, which are not
known.
In figures 20 and 21 the red areas of high transmission are relatively clearly circumscribed
compared to figure 22 in which there is relatively little change in transmission for different
flux bias values below power values of about −50dBm at the sample. This is probably an
effect of noise.

The bandwidth set at the VNA was 30kHz for all three measurements. The step size in Ib
was 10µA for all three measurements.
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Figure 20: Input power at the sample vs. flux bias for a SQUID periodicity of 55µm. The
color code indicates the depth of the dip [dB] (over the measured frequency interval) for each
point in the power vs. flux bias plane (see text). The black horizontal lines enclose the power
range, within which the change in depth of the dip in transmission over all flux bias values
exceeds 5.25dB.
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Figure 21: Input power at the sample vs. flux bias for a SQUID periodicity of 90µm. The
color code indicates the depth of the dip [dB] (over the measured frequency interval) for each
point in the power vs. flux bias plane (see text). The black horizontal lines enclose the power
range, within which the change in depth of the dip in transmission over all flux bias values
exceeds 5.25dB.
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Figure 22: Input power at the sample vs. flux bias for a SQUID periodicity of 225µm. The
color code indicates the depth of the dip [dB] (over the measured frequency interval) for each
point in the power vs. flux bias plane (see text). The black horizontal lines enclose the power
range, within which the change in depth of the dip in transmission over all flux bias values
exceeds 5.25dB.

Figure 23: Change of dip position with changing flux (indicated by arrows) in input power
vs. frequency diagram.
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3.6.1 Occurrence of 2-dips-per-Φ0 phenomenon

The transmission of the microwaves along the CPTL depends on the externally applied flux
as is discussed in more detail in section 3.5.
The power vs. flux bias diagrams (figures 20, 21 and 22) reveal that one period Φ0 contains
two areas of high (and low) transmission for the intermediate power values. Thus, increasing
the flux through the SQUID from Φ = 0 to Φ = Φ0 causes two “peaks“. From the measure-
ment results illustrated in figures 20, 21 and 22 we extract a period of ∆Ib = 2.5 · 10−5A.
This value fits very well with our theoretically expected value Ib = 2.5·10−5A from chapter 3.4.

Experimentally the assumption that two peaks form one period is reinforced by the
observation that e.g. in figure 20 the pattern alternately consists of a narrow and a wide
peak. This periodicity can also be seen in figure 21 where every other peak is very wide at
low power values. The pattern of two peaks for every one flux quantum also fits with figure
22 although here the structure is less sharp.

An explanation of this 2-dips-per-Φ0 phenomenon can be given as follows.
In figure 24 we plotted fres = 1

2π
√
Ltot(Φ)C

with Ltot from equation (12) against the normalized

external flux Φe
Φ0

.The resonance frequency of our SQUID transmission line is about 17GHz.
The theoretical curve of fres vs. Φe in figure 24 shows that this resonance frequency is excited
at two different values for Φe within each period Φe ∈ [0,Φ0]. Therefore it is clear that every
two dips in the transmission represent a period of one flux quantum Φ0 in the external flux
that goes through the SQUID loop.
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Figure 24: SQUID resonance frequency depending on the external flux.

3.6.2 Power range of flux dependence

Important for our investigations is the power range, in figures 20, 21 and 22, in which the
depth of the dip in transmission changes with the parameter Φe. This work is focussed mainly
on investigating a potential dependence of this range on the period of the SQUIDs in the
array.
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For investigating the potential dependence, a limit value (i.e. the level of change in depth
of the dip in transmission) was defined, which had to be exceeded by the difference between
maximal and minimal depth of the dip in transmission as explained in detail in chapter 3.6.
The behavior is flux dependent at a certain power if the limit value is exceeded there.
Values for the power range, i.e. the differences between the respective first and last power at
which the limit value is exceeded are enlisted in table 3 for different limit values. The limit
values are chosen as absolute values. The limit values cover the complete range of power
differences in which all three curves exist, as depicted in figure 25.

Table 3: Power range [dB] of flux dependence depending on distance and absolute limits of
change in depth of the dip in transmission that is to be exceeded

distance d [µm]

absolute limit [dB] 55 90 225

5.00 19.0 19.5 6.5
5.25 16.5 19.5 6.5
5.50 16.0 16.5 6.5
5.75 16.0 16.5 0.5
6.00 16.0 15.5 0.5

For calculating the numbers for d = 225µm an error in measurement was dismissed. This is
explained in further detail in the description of figure 25.

For the distance 90µm and the absolute limit 5.25dB there is the value 19.5dB in table 3.
This means that the black bars in figure 21 should be 19.5dB apart. This is indeed the case.
This means that the power range, in which the transmission is to be called flux dependent,
is 19.5dB wide for the limit value 5.25dB. Therefore the depth of the dip in transmission
changes, over a power range of 19.5dB, more than 5.25dB, when the external flux bias is
changed over the measured interval.

Calculating the bold numbers (in table 3 and 4) at least one of the analogous bars to the
black bars in the three figures (20, 21 and 22) above was at the first or last power that was
measured. Therefore the actual numbers might be larger than stated.

The resulting power ranges in table 3 indicate that for each fixed limit value the power range
of flux dependence increases in the step from d = 55µm to d = 90µm and decreases from
d = 90µm to d = 225µm to a level below that of d = 55µm. The only exception is the limit
value 6dB for which the power range decreases in both steps.

Another way of performing this analysis is by comparing relative limit values instead of
absolute values. For calculating a relative value a reference value is needed. As such the
maximal depth of the dip in transmission for each SQUID periodicity is chosen respectively.
The maximal depth of the dip in transmission used in table 4 are the lowest transmission
values indicated respectively in the color bars in figures 20, 21 and 22. These values are:
d = 55µm : −19dB, d = 90µm : −14dB, d = 225µm : −18dB.
The relative limit was then calculated via

limitrelative =

∣∣∣∣ limitabsolute

maximal depth of dip

∣∣∣∣ . (37)
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The results of this analysis are seen in table 4. The pattern observed now is again an increase
in power range of flux dependence from d = 55µm to d = 90µm and a decrease from d = 90µm
to d = 225µm to a level below that of d = 55µm.
This relative way of illustration is probably more meaningful because the normalization with
respect to the maximal depth of the dip in transmission makes the results better fit for
comparison. The overall pattern, however, is the same in tables 3 and 4. They both indicate
that no consistent behavior can be observed. A possible explanation for these findings is
that there might be two effects, a short-ranging and a longer-ranging effect, that could have
an impact. We definitely have to take into account our considerations in section 2.3, where
we found that the SQUIDs in the array with the periodicity d = 225µm are not exposed
to a magnetic field that is similar enough for all SQUIDs to be driven by a similar force.
Furthermore, we found in section 3.3 that the current induced in a SQUID by another SQUID
is negligibly small for d = 225µm and also for d = 90µm. Therefore there cannot be much
coupling between them.

Table 4: Power range [dB] of flux dependence depending on distance and relative limits of
change in depth of the dip in transmission that is to be exceeded

distance d [µm]

relative limit 55 90 225

20% 23.0 31.0 19.0
25% 20.0 29.5 8.5
30% 16.0 25.0 6.5
35% 8.5 19.5 0.0
40% 8.0 16.5 0.0

For calculating the numbers for d = 225µm the same error in measurement as above was
dismissed.

Another possibility to illustrate the data even more clearly will be described in the following.
Figure 25 shows the change in depth of the dip in transmission (over the measured flux bias
interval) on the vertical axis. On the horizontal axis the input power at the VNA is plotted.

This is an analogous illustration to the ones in figures 20, 21 and 22, but reduced by one
dimension, the flux bias. In each of these three figures two horizontal lines are drawn
representing the first and last power at which a power difference of 5.25dB is exceeded over
all frequencies and flux bias values.
To get the equivalent information from figure 25 a horizontal line has to be drawn at the
desired change in depth of the dip in transmission (vertical axis). The difference of the input
power values (horizontal axis) of the intersection points then give the power range of flux
dependence exceeding the specified change in depth of the dip in transmission.

When looking at the data for d = 90µm in figure 25 the highest values of power difference
are probably due to a measurement error. Evidence for this assumption can be seen in figure
21. Around the power values at the sample of about −42dBm to about −48dBm there are
two dark blue areas. These indicate a much lower transmission than expected. Therefore
the peak in figure 25 should actually be lower between −42dBm and −48dBm.

The curve for d = 55µm shows a relatively flat plateau with a little drop in the middle. Its
noise level is relatively high, as was already shown in figure 20, compared to the other two
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Figure 25: Change in depth of the dip in transmission (over the measured flux bias interval)
versus input power at the sample.

curves.
The curves for d = 225µm and d = 90µm are shifted more towards higher input power
values.
The sharp peak for d = 225µm at a power at the sample of about −54dBm can be dismissed
as an error in measurement, too. It corresponds to the yellow area in figure 22 at an input
power of about −54dBm.

Figure 25 shows no obvious correlation between the change in depth of the dip in transmission
and the distance of the SQUIDs.
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4 Conclusion and Outlook

In this thesis the effect of a linear rf-SQUID array on the transmission of a microwave,
through a coplanar transmission line (CPTL), was investigated. The potential correlation
between the periodicity of rf-SQUIDs and the power range in which the transmission of the
microwave signal depends on the flux threading the SQUIDs was examined.

The CPTL and the SQUID arrays were fabricated of niobium on a Si-substrate. A SQUID
array was placed in the gap on either side between the central line and the ground planes of
the CPTL.
The chip, with the structures on it, was installed in a cryostat at liquid helium temperature.
The microwave signal was supplied by a Vector Network Analyzer. The transmission was
measured for three different periodicities of the SQUIDs (55µm, 90µm and 225µm). We
varied the following variables: input power and frequency of the microwave signal and the
external flux bias.
For each pair of input power and flux bias values our Vector Network Analyzer (VNA) sent
a frequency sweep through the central line on the chip.

In our measurements we found the transmission of the microwaves through the CPTL to be
dependent on the externally applied flux bias and the frequency of the microwave signal.
It depends on the flux bias because the SQUIDs can be considered as LC oscillators in which
the amplitude of the induced current depends on the flux through the loop, according to the
first Josephson relation. Due to the oscillatory nature of the magnetic field of the microwave
signal the average external magnetic field at the sample was given only by the magnetic field
due to the coil. The magnetic field of the coil penetrated the SQUIDs perpendicularly.
A periodic behavior of the transmission regarding the external flux from the coil was found
for all three SQUID arrays with different periodicities. The bias current in the coil was
chosen over such a range that in total two magnetic flux quanta threaded the SQUID loops.
The power vs. flux bias diagrams reveal that for each Φ0 in external flux bias threading the
loop there are two maxima and two minima in transmission.
The transmission also depends on the frequency of the microwave signal because the
amplitude of driven oscillations, in general, is greatest if the oscillator is driven at its
resonance frequency. The resonance frequency of our SQUIDs is about 17GHz.
The microwaves provided the alternating magnetic field, around the central line, which
drove the current oscillations in the SQUIDs. Thus they supplied the energy for driving
the oscillations and they significantly lost energy if the induced current had a large amplitude.

The transmission, however, was affected by the external flux from the central line only in a
certain range of input power values.
For input power values very high or very low in our measurements there was no dependence
on the external flux. But there was an intermediate power range in which the transmission
depended on the external flux of the coil. We substantiated this finding by comparing it to
the results of a simulation.

According to our measurements there is no consistent correlation between the power range,
in which the transmission of a microwave signal is flux dependent, and the distance between
the SQUIDs.
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The SQUIDs couple magnetoinductively with each other. The current induced in a SQUID
either by another SQUID or by the CPTL was calculated using the concepts of mutual
inductance and coupling coefficient. It was found that the current induced by another
SQUID is small compared to the current induced by the CPTL. Our calculations showed
that in the case of the smallest periodicity between the SQUIDs (55µm) the induced current
by another SQUID is about 70 times smaller than the current induced by the CPTL. This
was calculated using the maximal current Ic = 5µA in the other SQUID and a typical
microwave power of P = −50dBm through the CPTL. This suggests that the effect of
coupling SQUIDs is small even for those with the largest mutual inductance between them.
For larger periodicities (90µm and 225µm) the induced current is even orders of magnitude
smaller.
Furthermore the SQUIDs in the array with the periodicity 225µm were not exposed to a
similar magnetic field over the whole array. Thus, they were not driven by the same force.

We propose to repeat the measurements with some alterations.
For one, the amplifier used was at room temperature. With an amplifier inside the cryostat
lower input power values can be used.
Furthermore SQUID arrays with smaller periodicities should be used to increase the coupling
effect of the SQUIDs among each other.
For further calculations it is to be noted that the coupling coefficient F̃ was derived in
reference [6] for a setup that does not fully match our setup with the CPTL.
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