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Introduction

The developement of so called metamaterials is currently a large area of research. Metamaterials
are artificially made materials, which exhibit unusual electromagnetic properties, the most famous
example being a material with a negative refraction index n < 0. Negative refraction index
metamaterials are known to have most useful applications, such as building a flat lense without
an optical axis, thus perfectly linear in its behavior [1].

A material’s response to applied electromagnetic fields is characterised by its magnetic per-
meability µ and electric permittivity ǫ. n < 0 requires µ < 0 and ǫ < 0 simultaneously [2].
µ < 0 can be obtained by periodically arranging planar electromagnetic resonators on a surface,
whereas a negative permittivity is approached through an array of thin conductive wires [1]. A
necessary condition for an arrangement of elements to effectively behave as a medium allowing
electromagnetic wave propagation is that the scale representing the arrangement’s periodicity s
is much smaller than the length λ of waves transmitted through it: s ≪ λ. In other words: the
medium has to be sufficiently homogeneous, hence compact elements are favorable.

The idea to use superconducting spiral resonators to build a negative refraction metamaterial
was recently proposed [3],[4]. Because of their small sizes and low losses they are promising
metamaterial building blocks. This work deals with the practical task of designing single spiral
superconducting microwave resonators and the study of their properties through simulations and
measurement. It also provides an overview of the basic properties of superconductors and of
lumped element resonator theory.
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Chapter 1

Basics of Superconductivity

Since in our case a superconductor is used for the fabrication of microwave resonators, some im-
portant properies of such a material as well as some basic theoretical concepts of superconductivity
shall be discussed in this chapter.

1.1 Critical Temperature, Resistance and Diamagnetism of

Superconductors

The most striking property of a superconductor is, that below a critical temperature TC its spe-
cific resistance ρ vanishes, which was discovered as early as 1911 by H. Kamerlingh Onnes. The
superconductor studied was mercury with a critical temperature of 4.2 K (see Fig. 1.1). Today
many materials are known to exhibit superconducting properties below a critical temperature,
which is material specific. On the other hand good room temperature conductors such as copper
and silver do not behave as superconductors even at lowest temperatures. Here as the temper-
ature approaches zero the specific resistance approaches a constant value, the so called residual
resistance, which is due to lattice impurities (see Fig. 1.2).

Figure 1.1: Kammerlingh Onnes’ diagram of the resistance of his
mercury sample marking the discovery of superconductivity in
1911. Below a critical temperature the resistance vanishes. (After
[5])
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Figure 1.2: Not all materials are superconductors. Relative re-
sistances (R/R290K) of two Kalium samples against temperature
are shown. Residual resistance is due to lattice defects, hence the
different values at low temperatures show that the samples had
different defect concentrations. (Copied from [6], p. 169)

Though in a superconductor we have a material with ρ = 0, we must carefully distinguish it
from an ideal conductor. In an ideal conductor by definition the electric potential Φ is constant
and hence the electric field E vanishes. Then by Maxwell’s equations

−∂tB = ∇ × E = 0 , (1.1)

meaning that inside an ideal conductor magnetic fields are constant in time. The behavior of
superconductors is different. It was observed that a superconducting bulk acts as an ideal dia-
magnet, in other words: being placed in an outer magnetic field Hout it expels this field from its
inside so that its magnetisation is M = −Hout [6].

To explain this effect named after Meissner and Ochsenfeld a closer look must be taken at the
currents inside a superconductor. For the density j of an homogeneous current we have

j =
nq

m
p , (1.2)

where n is the charge carrier density, q the charge of a carrier, m its mass and p the momentum
of any charge carrier in the current. To treat the problem by means of quantum mechanics we
assume that the wave function of charge carriers is given by ψ(r) = ψ0e

iθ(r). The assumtion
implies a constant charge carrier density |ψ(r)|2 = |ψ0|2 everywhere inside the superconductor.
To calculate the momentum we apply the momentum operator to ψ(r). In presence of an outer
magnetic field we obtain the proper momentum operator by replacing the kinetic by the canonical
momentum [7]: a method known as minimal coupling.

p =
h̄

i
∇ → p

field
=
h̄

i
∇ − qA . (1.3)

Here A is the vector potential so that ∇ × A = B. Applying p
field

to the wave function yields in

p
field

ψ(r) =
(

h̄∇θ(r) − qA
)

ψ(r) . (1.4)

Using (1.2) we finally obtain

j =
nq

m

(

h̄∇θ(r) − qA
)

(1.5)
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and taking the curl of both sides:

∇ × j = −nq2

m
B , (1.6)

because the curl of a gradient field vanishes. Equation 1.6 is called the first London equation. It
offers the following explanation to the Meissner-Ochsenfeld effect: Since by a Maxwell equation
∇×B = µ0j+µ0ǫ0∂tE and in our case there will be no time dependent electric fields, it is ∇×

(

∇×
B

)

= −∇2B = − µ0nq2

m B. This equation is called second London equation and
(

µ0nq2

m

)−1/2
= λ is

called the London penetration depth. The equation indicates that superconductors expel magnetic
fields, which can be shown by solving it for the simple case of a planar superconducting bulk of
thickness d, placed parallel to the field lines of an homogeneous magnetic field. Disregarding edge
effects the above equation can be simplified to ∂2

xB = λ−1B, where the x axis lies perpendicular
to the bulk surface at x = 0. Then B = Bx=0e

−x/λ meaning that if λ ≪ d inside the bulk B = 0
holds. Since B = µ0(Hout +M) we have Hout = −M as quoted above or in terms of susceptibility
χ = −1.

Figure 1.3: Illustration of the behavior of an homogeneous mag-
netic field inside a superconductor. The field is parallel to the
superconductor surface, the field strength decreases exponentially
as described by the second London equation. (Copied from [8])

Common values for λ are of the order of tens of nm, so that a bulk superconductor will behave as
an ideal diamagnet. Figure 1.4 illustrates the difference in behavior of ideal and superconductors.

Figure 1.4: Behavior of a hypothetical material becoming an ideal
conductor below a critical temperature TC (top) and a supercon-
ductor with the same TC (bottom). Inside an ideal conductor
magnetic fields do not change with time, whereas the supercon-
ductor shows the Meissner Ochsenfeld effect and expels the field.
(Copied from [9], p. 457)

5



One consequence of the Meissner-Ochsenfeld effect is that superconducting currents flow on the
surface of a superconductor, otherwise magnetic fields inside the superconductor would appear. In
fact it can be shown by further application of Maxwell’s equations that an electric field E inside

the superconductor also has to obay the equation ∇2E = − µ0nq2

m E [10].
It is essential to our discussion, that we considered superconducting charge carriers to be

of bosonic nature. Otherwise in the above derivation further complications due to Fermi-Dirac
statistics would arise. For example in case of fermionic charge carriers it is known that only those
carriers located on the Fermi surface can support an electric current. As we will see supercon-
ducting charge carriers in fact are bosonic.

1.2 Flux Quantization, Classification of Superconductors in

Types I and II, BCS Theory

1.2.1 Flux Quantization

The magnetic flux through a superconducting ring (see Fig. 1.5) is quantized in whole number
multiples of the flux quantum Φ0 = h

q , where h denotes Planck’s constant and q is the charge of
a single superconducting charge carrier. In other words: flux is quantized. This can be explained
using equation (1.5). As discussed in section 1.1 inside the superconductor no currents flow. From
(1.5) we get ∇θ = q

h̄ A and integrating over the closed loop C (Fig. 1.5) yields:

∮

c

∇θds =
q

h̄

∮

c

A · ds . (1.7)

Stokes’ theorem together with ∇ × A = B gives

∮

c

∇θds =
q

h̄

∫

B · ds , (1.8)

where the second integral is over the inner surface of the ring and gives the total flux through the
ring. The first integral, if not carried out over the whole loop, but between the two points 1 and

2 gives:
∫ 2

1
∇θds = θ2 − θ1. For a well behaved θ(r) the closed integral should vanish. However

it is not of physical importance that θ(r) is well behaved, but that eiθ(r) is well defined at every
point r

∮

c

∇θds = 2πn (1.9)

holds, where n is an integer number1. Obviously under such a condition eiθ(r) is well defined at
the point r0. On the other hand

∮

c
∇θds = 2πn 6= 0 becomes possible. Putting eq. (1.9) and

eq. (1.8) together we see, that if the total flux inside the ring Φ =
∫

B · ds does not vanish, it is
necessarily

Φ =
2πh̄n

q
=
h

q
n (1.10)

and flux is quantized. Figure 1.6 shows a measurement of quantized flux.

1If we are not too concerned with uniqueness of θ at every point, a function satisfying (1.9) is not hard to find.
For example θ = φ, where φ is the polar angle, satisfies (1.9).
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Figure 1.5: Magnetic flux inside a superconducting ring. The area
through which the flux flows is not superconducting. Integration
path C is shown. ([6], p. 308)

Figure 1.6: Measurement of magnetic flux quantization in a Sn
cylinder. Flux comes in quanta of Φ0 = h

2e . ([11], p. 30)

1.2.2 Type I and Type II Superconductors

Type I and type II superconductors show different magnetisation properties. A type I supercon-
ductor expels an applied magnetic field completely until it reaches a critical value HC . Above HC

the material shows no superconductivity. A type II superconductor expels an applied magnetic
field completely until it reaches a critical value HC1. Above HC1 the magnetic field is expelled
only partly. This state is called the vortex state. Finally above a second critical value HC2 the
superconductivity vanishes. Figure 1.7 visualizes this behavior.

Figure 1.7: Magnetization depending on applied outer magnetic
field H. In Type 1 materials superconductivity breaks down at a
critical field Hc. In Type 2 superconductors above Hc1 magnetic
fields are expelled only partly. Here superconductivity breaks
down at a higher outer field Hc2 (after [12])

.

7



Typically HC and HC1 are quite low and HC1 ≪ HC2. To distinguish between both supercon-
ductor types more precisely the coherence length ξ must be introduced. It is the length beneath
which electromagnetic fields varying in space have no considerable influence on superconducting
charge carrier density. Hence to calculate j fields must be averaged over ξ. Later ξ will be defined
more carefully. As stated in [6] following distinction can be made: London penetration depth
λ < ξ for a type I superconductor, whereas λ > ξ for a type II superconductor.

An important property of Type II superconductors is that between HC1 and HC2 magnetic
fields can penetrate the superconductor in the form of so called Abrikosov vortices (hence M 6=
−Hout and the name vortex state). This is visualized in Figure 1.8. Inside a vortex the material
is not in the superconducting but in the normal conducting state, hence flux quantization occurs
and the flux inside a vortex is equal to Φ0. In presence of an electric field vortices can move inside
the superconductor dissipating energy, however they tend to pin on crystal defects. To lower the
energy dissipation due to Abrikosov vortices on a superconducting film so called pinning centers
or flux traps, consisting of non-superconducting areas acting as artificial defects, can be placed
(see section 3.1).

Figure 1.8: In a Type II superconductor an applied outer mag-
netic field penetrates the superconductor in the form of so called
Abrikosov vortices. Inside the vortices material is not supercon-
ducting, hence flux quantization occurs. Every vortex carries on
quantum of magnetic flux. Supercurrents supporting the flux are
shown. ([13], p. 24)

1.2.3 BCS-Theory

The accepted microscopic theory on conventional superconductivity is the BCS (Bardeen, Cooper,
Schrieffer) theory. It states that even a weak attractive force between electrons leads to an elec-
tronic energy ground state of electrons (BCS groundstate) that is separated from excited states
by an energy gap of size ∆ and lies below the Fermi level of ordinary electrons.

Attractive forces between electrons stem from scattered electrons deforming the lattice and
making it possible for another electron to use this deformation to minimize its potential energy.
The two electrons are then attracted to each other. This attraction can be described mathemati-
cally by the exchange of a (virtual) phonon between the two electrons (see Fig. 1.9). One might
wonder, why the Coulomb force does not destroy such a subtle interaction. Here it is of impor-
tance that the processes of lattice deformation and Coulomb force act on significantly different
timescales. The time the lattice takes to return to its original state is so long, that the scattered
electron already is “too far away” for the Coulomb interaction between it and the arriving second
electron to be of importance.
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Figure 1.9: A Cooper pair. Two electrons with opposite momen-
tum vectors are attracted by means of a virtual phonon exchange.
Cooper pairs are the charge carriers of supercurrent. ([13], p. 117)

The attracted electrons as shown in Fig. 1.9 are called Cooper pairs. Electrons of a Cooper
pair have wave vectors k, −k and, which is most important, spins (↑) showing in oposite directions
(see [13], p. 115). Therefore Cooper pairs {k ↑,−k ↓} are bosonic and can condense in the BCS
groundstate. Measurements of quantized flux (Φ0 = h

q ) show ([6], p. 308) that the charge q
of superconducting charge carriers is in fact −2e, meaning that supercurrents are supported by
Cooper pairs.

Many electromagnetic properties of superconductors are consequences of the existance of the
energy gap ∆. Cooper pairs can not be decelerated by scattering on lattice defects, because there
exist no energy states supporting such a process. The occurance of critical temperature TC also
is explained by ∆. Furthermore the BCS theory delivers a formula for coherence length ξ0 =
2h̄vF /π∆ ([6], p.306), where vF is the Fermi velocity. In case of so called dirty superconductors
with mean free path l for electrons in the normal state it is ξ = (ξ0 · l)1/2, which together with
1.2.2 explains why alloys and non-epitaxial thin films tend to be type II superconductors. For
example pure lead is a type I superconductor, whereas an alloy of lead and 2% Indium becomes
type II. NbN films, used for resonator fabrication in our case, also are type II superconductors.

1.3 Kinetic inductance

The energy stored in a magnetic field H,B is given by W = 1
2

∫

V
H · B d3x. For a wire through

which current I flows W can also be expressed in terms of current [14]:

W =
1

2
LgeoI

2 , (1.11)

where Lgeo is called inductance and depends on the geometry (curvature, length...) of the wire.
Creating a magnetic field is not the only way a flowing current can store energy. The kinetic
energy of charge carriers also can be of importance, however it is negligible for a normal conductor
since, due to frequent scattering, electrons have no time to accumulate a great amount of kinetic
energy beside their thermal energy which is not considered, because it is not caused by an electric
field. Cooper pairs however are not scattered and therefore can store kinetic energy.

Consider a thin superconducting film of cross section A and length l with a homogeneous
current density j. The total current is I = jA. The kinetic energy stored by the current is

Ekin =
∑ p2

2m where the sum is over all Cooper pairs. Assuming an homogeneous Cooper pair

density ns we can write Ekin = p2

2m · ns · A · l. From (1.2) we get p = m
nsq j and therefore using
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I = jA:

Ekin =
m

2nsq2

l

A
I2 . (1.12)

Since Ekin ∝ I2 in analogy to (1.11) we can write

Ekin =
1

2
LkinI

2 (1.13)

hereby defining the kinetic inductance Lkin. The total energy stored is Etot = Ekin +W = 1
2

(

Lkin +

Lgeo

)

I2. Therefore total inductance is the sum of geometric and kinetic inductance. From this
follows, that geometric and kinetic inductance behave equal in terms of ac impedances. The
resonant frequency 1/

√
LC of an ordinary capacitance inductance resonator is lowered by a non

vanishing kinetic inductance because of L = Lgeo + Lkin.
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Chapter 2

Resonator Theory

This chapter gives an overview of lumped element resonator theory. Scattering parameters are
defined and discussed, as well as parallel, series RLC resonators and their quality factors. A lumped
elements model of a spiral resonator capacitively coupled to a feedline is proposed. Methodes for
determining quality factors from simulations are derived from the model.

2.1 The Transmission Line

A transmission line (TL) consists of two conductors linked through capacitance C and inductance
L, whose values depend upon material properties and geometrical distribution in space. In addition
conductors will usually behave as ohmic resistors with resistance R. It is possible to discuss the
properties of TLs using a lumped-element circuit model as shown in Fig. 2.1. Here R, L, C are
defined as quantities per unit length and in order to take dielectric loss into account conductance
G is introduced. ∆z marks a small length intervall along the TL.

Figure 2.1: Lumped elements model of a transmission line section
of length ∆z. The section contributes an Ohmic resistance R∆z
an inductance L∆z a capacitance C∆z. Conductance G∆z takes
dielectric losses into account. ([15], p. 50)

Analysing this circuit we follow Ref. [15]. In this section we will denote the imaginary number
as j to reserve i for the time dependent total current through a conductor. By Kirchhoff’s voltage
law from Fig. 2.1 we have:

v(z, t) −R∆zi(z, t) − L∆z
∂i(z, t)

∂t
− v(z + ∆z, t) = 0, (2.1)

and by the Kirchhoff’s current law, it is:

i(z, t) −G∆zv(z + ∆z, t) − C∆z
∂v(z + ∆z, t)

∂t
− i(z + ∆z, t) = 0. (2.2)

Dividing (2.1) and (2.2) by ∆z results in (2.3) and (2.4), if ∆z → 0.
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∂v(z, t)

∂z
= −Ri(z, t) − L

i(z, t)

∂t
(2.3)

∂i(z, t)

∂z
= −Gv(z, t) − L

v(z, t)

∂t
. (2.4)

Assuming oscillating voltages and currents v(z, t) = V (z)ejωt and i(z, t) = I(z)ejωt (2.3) and (2.4)
can be rewritten as

dV

dz
= −(R+ jωL)I (2.5)

dI

dz
= −(G+ jωC)V . (2.6)

General solutions to this first order coupled ordinary differential equations are

V (z) = V +
0 e−γz + V −

0 eγz (2.7)

I(z) = I+
0 e

−γz + I−
0 e

γz , (2.8)

implying that wave propagation is possible in +z direction (hence V +
0 , I+

0 ) and -z direction.

γ =
√

(R+ jwL)(G+ jwC) = α+ jβ is called propagation constant. By plugging (2.7) into (2.5)
we see that

I(z) = Z0

(

V +
0 e−γz − V −

0 eγz
)

, (2.9)

where Z0 = γ
R+jωL is called characteristic impedance.

2.1.1 Reflection and Transmission Coefficients

In this section we assume a low loss or lossless transmission line, so that the amplitudes of voltage
and current are constant along the TL. Consider a terminated TL as shown in Fig. 2.2. By

definition it is ZL = V (z=0)
I(z=0) . From (2.7), (2.9) we see ZL =

V +
0

+V −

0

V +
0

−V −

0

Z0, so that

V −
0

V +
0

=
ZL − Z0

ZL + Z0
=: Γ . (2.10)

The ratio between amplitudes of incident and reflected waves Γ is called reflection coefficient. Note
that Γ = 0 if ZL = Z0, so no waves are reflected.

Figure 2.2: Transmission line with characteristic impedance Z0

and propagation constant jβ terminated at z = 0 in an impedance
ZL. ([15], p.58)

To calculate the transmission coefficient T we imagine that the TL is not terminated at z = 0 but
connected to another TL with a different characteristic impedance Z1 (Fig. 2.3).
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Figure 2.3: Illustration of transmission and reflection of waves at
a connection of TLs of different characteristic impedances. ([15],
p.63)

(2.7) can be rewritten as V (z) = V +
0

(

e−jγz + Γejγz
)

. Assuming the second TL is terminated
in Z1 somewhere at z > 0, there is no reflection except at z = 0. Thus for z > 0 we write
V1(z) = V +

0 Te−γz, hereby defining the transmission coefficient T. At z = 0 it is V (0) = V1(0), so
that

T = 1 + Γ =
2Z1

Z1 + Z0
. (2.11)

2.2 Scattering Parameters of a Two Port

During this work a spiral resonator coupled to a feedline is considered to be a two port network.
Abstractly speaking a two port networt (short: two port) consists of a “black box”1 and four
terminals (see Fig. 2.4). Two terminals respectively form a port, which can be connected to a TL.

Figure 2.4: An abstract two port. V
+/−

i are the amplitudes of
incident or reflected voltage waves. The black box may contain
some unknown circuitry.

The so called scattering parameters can be defined by

Sij =
V −

i

V +
j

, (2.12)

where i, j indicate at which port voltage amplitude is measured and where - / + indicate the am-
plitude of waves leaving / entering the “black box”. In our case the “black box” has an impedance
Zbox and the TL leading to port 2 is terminated in an impedance that equals its characteristic
impedance Z0, to avoid wave reflection at the port (see Fig. 2.5).

1in our case containing the resonator
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Figure 2.5: In simulations we will concider a two port where one of
the ports is terminated to avoid wave reflections. The scattering
parameters are calculated taking this termination into account.

Effectivly such a two port is a TL2 with characteristic impedance Z0 terminated in an impedance
Zeff. Depending on the box circuitry it is Zeff = Zbox + Z0 or Zeff = Zbox||Z0. The symbol a||b
stands for a and b being cirquited parallel. Now the expressions for the scattering parameters can
be obtained in terms of impedances. By (2.10) and (2.11) we know that

S11 = Γ =
Zeff − Z0

Zeff + Z0
(2.13)

and

S21 = T =
2Zeff

Zeff + Z0
. (2.14)

2.3 Resonant Circuits and Quality Factors

2.3.1 Series RLC Resonant Circuit

A series RLC is shown in Fig. 2.8. Its input impedance is Zin = R+ jωL+ 1
jωC and the resonance

frequency is ω0 = 1√
LC

, implying that |Zin| at resonance is minimal and Zin(ω0) = R is real.

Figure 2.6: Series RLC contour consisting of resistor R, induc-
tance L and capacitance C.

An important parameter of a resonant cirquit is its quality factor Q, indicating how well the
cirquit stores energy. It is defined as

Q = ω
average energy stored

energy loss per time unit
= ω

Wm +We

Pl
, (2.15)

where Wm = 1
4 |I|2L is the average energy stored in magnetic fields, We = 1

4 |VC |2C = 1
4 |I|2 1

ω2C
the average energy stored in electric fields and Pl = 1

2 |I|2R the average power dissipated. The
additional factor 1

2 in this equations origins in averaging over the sinusoidal time dependences of
I and V . Plugging this into (2.15) gives Qω0

= 1
ω0RC .

For a small ∆ω = w − w0 the impedance of a series RLC can be approximated by

Zin ≈ R+ j
2RQ∆ω

ω0
= R+ j2L∆ω . (2.16)

Using this result it can be shown3 that

Q ≈ ω0

BWω
, (2.17)

2namely the TL leading to port 1.
3See [15], p. 268f for further details.
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where BWω is the width of |Zin|-curve at |Zin| = 1√
2
R (see Fig. 2.7). This approximation is

reasonable for large quality factors, where ∆ω is small.

Figure 2.7: Input impedance of a series RLC. Illustration of de-
terming Qi by measuring the width of |Zin|-curve. ([15], p.267)

2.3.2 Parallel RLC Resonant Circuit

The input impedance of a parallel RLC circuit is given by |Zin| = 1
1
R

+ 1
jωL

+jωC
, its resonant

frequency is ω0 = 1√
LC

and its quality factor is Q = ω0RC. For a small ∆ω = w − w0 the

impedance can be approximated by

Zin ≈ R

1 + 2j∆ωRC
=

R

1 + 2jQ∆ω/ω0
, (2.18)

At resonance |Zin| is maximal, but the approximation

Q ≈ ω0

BWω
, (2.19)

still holds for a big Q4. The knowledge of parallel and series RLCs is useful, because many resonant
circuits can be approximated by RLCs near resonance.

Figure 2.8: Parallel RLC contour consisting of resistor R, induc-
tance L and capacitance C.

Until now only the internal energy loss of resonators was concidered, usually however the
resonator is coupled to other circuitry, which lowers its overall Q. Let Qi be the resonator’s
internal quality factor. We define the coupling quality factor Qc such, that

1

Q
=

1

Qc
+

1

Qi
. (2.20)

4See [15], p. 270f for further details.
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2.4 Lumped Element Model of a Spiral Resonator Coupled

to a Feedline

Naively one can picture a spiral resonator (Fig. 2.10) as a wound up piece of open-cirquited
TL (Fig. 2.9). An open circuited piece of TL behaves as a resonator by itself and its input
impedance can be, at resonance, approximated5 by Zin ≈ Z0

αl+j(∆ωπ/ω0) . Here α is the real part

of propagation constant γ, l the TL’s length and Z0 its characteristic impedance. Comparing this
expression for Zin to (2.18) we see, that at resonance an open circuited transmission line resonator
behaves like a parallel RLC circuit. We therefore want to assume that the spiral, being a wound
up open circuited TL, also will behave as a parallel RLC at resonance. Additionally the spiral is
capacitively coupled to a feedline6.

Figure 2.9: An open cirquited piece of transmission line with char-
acteristic impedance Z0 and propagation constant γ = a + ib as
shown here is by itself a resonator. It is resonable to concider a
spiral resonator to be a wound up piece of an open circuited TL
as done in our analysis. ([15], p.276)

Since in our simulations resonators are considered lossless, the resistance of the parallel RLC
approaches infinity and can be neglected, thus leading to the lumped element model shown in Fig.
2.10.

5See [15] p. 276.
6Our approach is analogous to the one proposed in Ref. [16], where a waveguide resonator measured in trans-

mission was concidered.
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Figure 2.10: Illustration of the simulated two port cirquit (com-
pare to Fig. 2.5) and the lumped elements model of the spiral
resonator. Cc represents the resonator’s capacitive coupling to
the feedline and C, L are properties of the resonator itself.

As seen from Fig. 2.10 Zbox = 1
1

jωL
+jωC

+ 1
jωCc

= j
ω(C+Cc)− 1

ωL
Cc
L

+ω2CCc

, meaning that Zin = 0 for

ω0 = 1√
L(C+Cc)

and |Zin| = ∞ for ω1 = 1√
LC

. Thus the coupling capacitance led to the occurance

of a resonance at ω0 with minimal input impedance. Zeff as defined in (2.13) and (2.14) can be
now written as

Zeff = Zbox||Z0 =
1

1
Zbox

+ 1
Z0

, (2.21)

Where the || sign denotes that two impedances are shunted. We see from (2.21) that Zeff(ω0) = 0
and Zeff(ω1) = Z0. From (2.14) follows that S21(ω0) = 0 and S21(ω1) = 1. It is ω1 > ω0 and
|S21| < 1 for 0 < ω < ω0, therefore S21 is assymetric around the resonance. The scattering
parameters at any frequency can be calculated from (2.13) and (2.14). Fig. 2.11 shows scattering
parameters simulated by Sonnet and calculated with (2.23) in comparison.

S11 =
Ccω(1 − CLω2)Z0

2j(1 − (C + Cc)Lω2) − Ccω(1 − CLω2)Z0
(2.22)

S21 =
2j(1 − (C + Cc)Lω2)

2j(1 − (C + Cc)Lω2) − Ccω(1 − CLω2)Z0
(2.23)
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Figure 2.11: Typical |S21| values deliverd by a Sonnet simulation
and the fitted |S21|-curve of the lumped elements model. The
large figure shows the assymetric behavior at |S21| ≈ 1 due to
the capacitive coupling, and the smaller figure shows the whole
resonance. At ω0 |S21| vanishes, whereas at ω1 |S21| = 1.

The minimum at ω0 in Fig. 2.11 implies, that around this frequency Zeff, representing the cou-
pled resonator, can be approximated by the impedance of a series RLC. In fact Taylor expanding
Zeff gives

Zeff ≈ j 2
(C + Cc)2

C2
c

L∆ω + O(∆ω2) , (2.24)

which can be written in a form similar to (2.16) by defining Leff = (C+Cc)2

C2
c

L.

2.5 Determinating Quality Factors from Simulated Data

The results of preceding analysis are useful for determinating quality factors of spiral resonators
from data obtained by Sonnet simulations.

2.5.1 The -3 dB Method

We first show that a statement resembling (2.17) is valid for our capacitively coupled resonators7.
We will, however, concider the absolute value of scattering parameter |S21| instead of the input
impedance, since simulation data is delivered in form of scattering paramenters. The coupling
quality factor at frequency ω0 = 1√

(C+Cc)L
can be calculated using the lumped element model

(Fig. 2.13) and is given by

Qc = ω0
Wm +We

Pl
= ω0

|VC |2

4ω2
0

L
+ 1

4 |VC |2C + 1
4 |VCc

|2Cc

|VZ0
|2/Z0

= 2
(C + Cc)

√

(C + Cc)L

C2
cZ0

. (2.25)

From (2.14) and (2.21) it is |S21|2 =
[

1 +
C2

c ω2(CLω2−1)2Z2
0

4((C+Cc)Lω2−1)2

]−1
=

[

1 + 1
4Y

]−1
. Let BWω be the

width of |S21|-curve at the point where Q ≈ ω0

BWω
. Approximating ω2 = (ω0 +∆ω)2 ≈ ω2

0 +2ω0∆ω

7This is reasonable because the coupled resonator, in contrary to the uncoupled spiral, can be approximated as
series RLC, as shown in 2.24.

18



for a small ∆ω = 1
2BWω we can write Y =

(QC2
c Z0−CCcZ0)2(QC2

c Z0+C2
c Z0)

1
4

Q3C6
c Z3

0

= 4
(

1 + O
(

1
Q

)

)

, which

is effectively 4 for a big Q. Thus |S21| = 1√
2

when Q ≈ ω0

BWω

Since Q ≈ ω0

BWω
at |S21| = 1√

2
one can determine Q by measuring BWω and resonance

frequency ω0. In case scattering parameters are given in dB, |S21|2 = 1
2 corresponds |S21| =

−3dB. This method however often is tedious because BWω can be measured properly only after
performing several “zoom-in” simulations.

Figure 2.12: Model used for calculating the Q factor. The calcu-
lation implies that voltage is applied at capacitance C at t = 0,
power passing through Cc at t > 0 is dissipated.

Figure 2.13: Measuring the the width of the resonance allows
to determine the quality factors of a resonator. Measuring the
width 3dB below |S21| = 1 gives the overall, loaded Q. It is
Q = ω0

BW1
, where ω0 is the resonance frequency and BW the width.

Through measuring the width 3dB above the resonance minimum
one obtains the internal quality factor Qi = ω0

BW2
(see 2.3.1). Since

in this chapter we are considering a lossless resonator, power only
dissipates through the coupling to cirquitry and the quality factor
corresponding to BW1 is the coupling quality factor Qc = Q (see
(2.20)).
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2.5.2 Determination of Q through linearization of S21

Near ω0 |S21| behaves linear and can be approximated by

|S21| = 4
(C + Cc)2L

C22Z0
∆ω + O(∆ω2) = 2Q

∆ω

ω0
+ O(∆ω2) . (2.26)

If therefore a simulation delivers some |S21|-values near zero, the Q factor can be determined from
(2.26).

2.5.3 Determination of Q Using a Third Port

Additionally, as shown in Ref. [17], Q can be determined using a third port directly attached to
the resonating part of the circuit (Fig. 2.14). The third port allows to measure the resonator’s
input impedance. Although in simulations resonators are assumed lossless, their input impedance
Zin can be approximated by that of parallel or series RLC with finite R due to energy dissipation
through their coupling to feedlines. Ref. [17] conciders the series RLC case, where from (2.16)

one sees immediately that ℜ(Zin) = R and dℑ(Zin)
dω = 2RQ

ω0
. This is not obvious for the parallel

RLC circuit representing a resonating spiral, however Taylor expanding (2.18) around ω0 shows
that here Zin = R − j 2RQ

ω0
∆ω. In both cases Q can be determined from ℜ(Zin) and the slope

S = dℑ(Zin)
dω at resonance.

R = ℜ(Zin(ω0)) (2.27)

Q =
∣

∣

∣

Sω0

2R

∣

∣

∣
. (2.28)

All three methods were used during this work. If carried out properly the results of all three
methods are in good agreement with each other (see Table 2.1).
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Method Qc

-3 dB 2330 ± 30
Linearization 2324 ± 5
Third port 2330 ± 5

Table 2.1: The quality factor of a resonator at 6.52 GHz was
determined using the three described methods. The results were
in good agreement.

Figure 2.14: Geometry of a Sonnet simulation using three ports.
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Chapter 3

Design and Simulation of Spiral

Resonators

3.1 Spiral Design

Two types of resonating spirals were chosen to be investigated during this work. First a simple
Archimedean and second a double wound spiral (Fig. 3.1). The layouts were created with LEdit
[18], a programm commonly used for designing MEMS, which allows to generate circuit geometry
from C++ code. To parameterize the Archimedean spiral the formula

~r(t) = R(t)

(

cos(ωt)
sin(ωt)

)

(3.1)

was used. R(t) is a function linear in t. Through a convenient choice of R(t) and ω, depending
on the width of spiral loops as well as on outer and inner radii, one obtains a spiral with a given
number of loops n. Parameters used to describe the spirals are listed and explained in Fig. 3.2.
Double wound spirals were constructed out of two Archimedean spirals, whose centers were shifted
against each other and connected with two half open toruses.

Figure 3.1: Two types of spiral resonators were simulated: a sim-
ple Archimedean spiral and a double wound spiral as seen on the
right.

In total 32 resonators of different resonant frequencies, quality factors and widths of spiral
loops were designed. The resonators were distributed on four chips, with eight resonators on each.
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All resonators on one chip differ in frequencies but are of the same type (simple or double wound).
Four of the resonators on each chip have a high coupling Q (order of 105) and four have a low one
(order of 103). Table 3.1 lists all the resonators and chips.

Chip Resonant frequency Type of spiral Width of spiral loops Qc

SPIRAL S 1 1
5 GHz simple Archimedean 1µm ≈ 103

6 GHz ” ” ”
7 GHz ” ” ”
8 GHz ” ” ”
5.25 GHz ” ” ≈ 105

6.25 GHz ” ” ”
7.25 GHz ” ” ”
8.25 GHz ” ” ”

SPIRAL S 5 5
5 GHz simple Archimedean 5µm ≈ 103

6 GHz ” ” ”
7 GHz ” ” ”
8 GHz ” ” ”
5.25 GHz ” ” ≈ 105

6.25 GHz ” ” ”
7.25 GHz ” ” ”
8.25 GHz ” ” ”

SPIRAL D 1 1
5 GHz double wound 1µm ≈ 103

6 GHz ” ” ”
7 GHz ” ” ”
8 GHz ” ” ”
5.25 GHz ” ” ≈ 105

6.25 GHz ” ” ”
7.25 GHz ” ” ”
8.25 GHz ” ” ”

SPIRAL D 5 5
5 GHz double wound 5µm ≈ 103

6 GHz ” ” ”
7 GHz ” ” ”
8 GHz ” ” ”
5.25 GHz ” ” ≈ 105

6.25 GHz ” ” ”
7.25 GHz ” ” ”
8.25 GHz ” ” ”

Table 3.1: Table of the 32 designed resonators and their charac-
teristics. The chip names are as written on the chips themselves;
S/D meaning simple or double, 1 1 and 5 5 indicating the width
of spiral loops and distance between loops in µm.
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Figure 3.2: Parameters used to specify a spiral resonator’s geom-
etry. loopn: number of loops, polyt: number of vertices of the
spiral polygon. rad0: outer radius, width: width of spiral loops,
distance: distance between spiral loops. feedline distance: dis-
tance between spiral coupling and feedline or bridge. coupling:
length of spiral’s capacitive coupling. bridge: whether a grounded
bridge between feedline and spiral is placed to achieve a higher
Qc. anglecutoff: angle to be cut off at the inner end of the spiral
to fine tune the resonant frequency.

The quality factor Qc as calculated from the lumped elements model (see 2.5) is given by

Qc = 2
(C + Cc)

√

(C + Cc)L

C2
cZ0

, (3.2)

meaning that we can adjust Qc by varying the coupling capacity Cc. To do so it is possible to
vary the distance between coupling and feedline d or the length of the couling l - analogous to
a parallel-plate capacitor. Aditionally to achieve a higher Qc a grounded bridge of width w can
be placed between coupling and feedline (for typical values of d, l and w see table 3.1). In case
of our resonators Cc was adjusted once at a certain frequency for a certain type of spiral (simple
or double wound design, 5 or 1 µm loop width, coupling strength) and then kept while varying
frequency. Thus the Qc of resonators with same coupling geometry but different frequencies varies
by a factor of two to three, which is not surprising, since, to vary the frequency from 5GHz to
8GHz the resonator’s geometry, i.e. C and L have to be changed.
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Type of Resonator Resesonance Coupling Qc Width of
frequency /GHz length /µm grounded

bridge /µm

Simple Archimedean 8.2 6 670 0
Simple Archimedean 8.2 26 10500 15
Double wound 8.3 1 5000 0
Double wound 8.3 8 11000 1

Table 3.2: Data on coupling length, width of grounded bridge
between feedline and coupling as well as distance between feedline
and coupling for simple Archimedean and double wound types of
resonators with a loop width of 1µm.

Altering the radius as well as the number of loops and thereby it’s length changes the resonance
frequency of a spiral resonator. Facing the task of designing 32 resonators with given frequencies
it seems reasonable to change only one of the many spiral parameters from Fig. 3.2. The decision
was made to let the number of loops constant for a certain type of spiral and to alter the frequency
by changing the outer radius. Since the width of spiral loops was fixed to 1 or 5 µm altering the
outer radius automatically leads to an altered inner radius, which is not an independent parameter
in our design (see Fig. 3.3).

Figure 3.3: To vary the resonant frequencies, outer radii of the
spirals were changed, whereas the number of loops was held con-
stant. The figure shows resonators at 8.25, 6.25 and 5.25 GHz.

Finally, for each type of spiral, frequencies were adjusted in the same way. Four outer radii
were chosen by eye, simulated and than, through an interpolation of obtained results, radii corre-
sponding to the required frequencies were calculated. As an example we show how the frequencies
of the four double wound resonators with a loop width of 5µm and Qcof order 105 were adjusted.
Here simulations yielded in the results shown in table 3.3.

Outer radius /µm Resonant frequency /GHz

159 8.36
180 6.56
198 5.53
212 4.93

Table 3.3: Results of simulations of four double wound resonators
with a loop width of 5µm and different outer radii.

This data was interpolated with a polynomial of fourth degree:

router = 509µm − 106
µm

GHz
ν + 11.7

µm

GHz2 ν
2 − 0.478

µm

GHz3 ν
3 , (3.3)

which allows to calculate radii leading to needed resonance frequencies (table 3.4).
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Outer radius /µm Resonant frequency /GHz

204 5.25
184 6.25
170 7.25
159 8.25

Table 3.4: Calculated outer radii of four double wound resonators
with a loop width of 5µm and Qcof order 105.

Figure 3.4 shows the simulated frequencies and the interpolation polynomial.

5.0 5.5 6.0 6.5 7.0 7.5 8.0
Frequency � GHz

160

170

180

190

200

210

Outer radius

Figure 3.4: Outer radii in µm and resonance frequencies of four
double wound spirals. Simulated frequencies and the interpola-
tion polynomial used to determine radii corresponding to given
resonance frequencies.

After designing the resonators in the manner described above they were distributed on chips
according to table 3.1. A chip is shown in Fig. 3.6. Although our resonators nominally are
measured at zero magnetic field, to avoid energy dissipation due to Abrikosov vortices in case
of some residual magnetic field, flux traps were placed on the chips as suggested by Ref. [19].
The traps consist of rectangular, 10x10 µm2 large holes in the superconducting film and were
distributed 10µm apart from each other over the whole surface of the chip. No flux traps were
placed on the spiral itself and the feedline. A strip of 5µm width around the edges of feedline
and resonator box was kept flux trap free to avoid influence on quality factors and resonance
frequencies (Fig. 3.5).
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Figure 3.5: Rectangular nonconducting flux traps were placed on
the chip’s surface to lower the energy losses due to Abrikosov
vortices. The flux traps are 10x10 µm2 in size.

Figure 3.6: Part of a chip consisting of launcher and four res-
onators. Eight resonators of the same kind were placed on every
chip.
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Type Radii of 5.0 GHz resonators Radii of 8.0 GHz resonators

Simple 1 1 78 µm 62 µm
Double 1 1 91 µm 70 µm
Simple 5 5 178 µm 140 µm
Double 5 5 210 µm 161 µm

Table 3.5: Radii of smallest and largest resonators of every type.

3.2 Simulation of Resonators

To determine the resonance frequency and quality factor of designed resonators the spirals were
simulated with Sonnet [20]. Sonnet is a commercial software, which allows simulations of planar
circuits or antennas at high frequencies. As described in the previous section, in order to obtain
precise resonance frequencies the parameters of a spiral were changed by eye and then simulation
results were interpolated. Simulations were carried out with the two port geometry shown in figure
3.7, employing a third port for determining Qc if necessary. The flux traps were not simulated due
to memory constrains, however the grounded planes around spiral and feedline were included. As
the feedline width was chosen to be 10µm, the distance between feedline and grounded box was
fixed to 6µm ensuring a characteristic transmission line impedance of 50Ω to avoid wave reflection
at the ports.

Figure 3.7: Geometry of Sonnet simulations. Simulation plane
with spiral and grounded box consisting of an ideal conductor.
Vacuum (ǫr = 1) above and silicon (ǫr = 11) below the simulation
plane.

Silicon is used as substrate for resonator chips, so a dielectric constant ǫ = 11 was chosen as
material parameter for the layer below and ǫ = 1 for the layer above the superconducting surface
(vacuum). The thickness of both layers was chosen to be 1000µm (see Fig. 3.7). All conducting
parts were simulated as ideal conductors with zero resistance; dielectric losses were neglected, too.

The results of a simulation are given in terms of scattering parameters Sij or in terms of
impedances. Being at the minimum of transmission the resonance frequency can be directly seen
from the S21 data. Qc factors were determined using methods described in the resonator theory
chapter. The duration of a simulation strongly depends on the quality factor of a simulated
resonator. For a high Qc resonator it is more difficult to obtain an accurate resonance curve, since
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the curve is narrow and demands a high resolution in frequency space.

Figure 3.8: A typical S21 curve of a resonator as shown in Fig 3.7
delivered by Sonnet. At resonance S21 is minimal.

It was found that a double wound spiral has a higher resonance frequency and a consider-
ably higher Qcthan a simple Archimedean spiral of same radius and same geometrical coupling
properties (see table 3.6).

Radius /µm Length /µm Frequency /GHz Q

Simple spiral 155 7479 6.52 2330
Double wound spiral 155 7060 9.0242 16700
Double wound spiral 159.6 7478 8.49 18400

Table 3.6: Comparison of resonant frequencies and quality falctors
of simple and double wound spirals of same length or radius. Dou-
ble wound spirals have a higher Qcand a higher frequency.

This phenomenon can be understood qualitatively considering that the inductance of a double
wound spiral is lower than that of a simple spiral, because the current along a double wound
spiral has to flow inward and then outward, so that the magnetic fields created by the currents
partially annihilate each other. Since Φ = LI a lower magnetic flux means a lower inductance.
The resonance frequency of an LC resonator is given by ω0 = 1/

√
LC so that a lower inductance

leads to a higher resonance frequency.
In an open circuited λ/2 TL resonator (see Fig. 3.9) the voltage is maximal at one and minimal

at the other end. In case of the double wound spiral voltage difference along the spiral induced
by the feedline is small, because both ends of the spiral are at nearly the same distance from the
feedline. In case of the simple spiral one end of the spiral is much nearer to the feedline than the
other, hence the induced voltage is higher, resulting - together with the larger inductance - in a
lower quality factor.

3.2.1 Current Density and Field Distribution in Simple Archimedean

and Double Wound Spirals

As described in Chapter 2.4 the spiral resonator should qualitatively behave as an open circuited
λ/2 TL resonator. Figure 3.9 shows that at the fundamental resonant frequency (n = 1) the abso-
lute voltage value should be maximal at the ends of the TL. This implies that the current density
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is minimal at the ends and maximal in the middle (at l/2) of the resonator. In fact simulations
confirmed that this is the case. Figures 3.10 and 3.11 show the current destributions along simple
and double wound spirals, figures 3.12 and 3.13 show the corresponding field distributions1.

Figure 3.9: Voltage distribution along an open circuited λ/2 TL
resonator, which can be used to develop a qualitative understand-
ing of the behaviour of the spiral resonator. n=1 stands for the
fundamental frequency and n=2 for the second harmonic. The
resonator has a characteristic impedance Z0 = α+ jβ. Note that
the current density is minimal at the TL’s ends. ([?],S.276)

Figure 3.10: Current destribution along a
simple Archimedean spiral at the funda-
mental resonance frequency. As expected
from comparison with the open circuited
λ/2 TL resonator the current density is
minimal at the spiral’s ends. Simulation
was performed with Sonnet.

Figure 3.11: Current destribution along
a double wound spiral at the fundamen-
tal resonance frequency. As expected from
comparison with the open circuited λ/2 TL
resonator the current density is minimal
at the spiral’s ends. Simulation was per-
formed with Sonnet.

1Since Sonnet is designed for planar simulations, only the field component parallel to the spiral plane could
be simulated. For doing so a so called sense metal plane of high reactance was placed above the resonator. The
simulated current destribution along the sense metal plane is, by Ohms law E = σj, proportional to the field
strength.
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Figure 3.12: Electric field destribution of a
simple spiral resonator. The field is max-
imal at both ends of the spiral. Note
that Sonnet is only able to simulate the
field component parallel to the spiral plane.
The field is simulated by calculating the
current destribution of sense metal plane
above the resonator, hence the absolute
values in this diagramm are not of partic-
ular interest.

Figure 3.13: Electric field destribution of a
double wound spiral resonator. The field is
maximal at both ends of the spiral. Note
that Sonnet is only able to simulate the
field component parallel to the spiral plane.
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Chapter 4

Measurements

One of the four chip designs was measured at 4.2 K and below. The measured chip contained
double wound spiral resonators of 5 µm loop width. Resonances were observed and internal as
well as coupling quality factors determined.

4.1 Measurement Setup

4.1.1 Sample Chip

Chip SPIRAL D 5 5 (see 3.1), containing four strongly coupled (QC of order of 103) and four
weakly coupled (QC of order of 105) double wound spiral resonators was measured. The chip was
fabricated using intrinsic Si as substrate on which a 60 nm thick intrinsic NbN superconducting
film was sputtered. The NbN film was found to have a critical temperature of 9.25 K1. Figures
4.1 and 4.2 show a part of the chip and a single double wound resonator.

Figure 4.1: Microscope image of a part of the fabricated SPI-
RAL D 5 5 chip with launcher attached to feedline and five double
wound spiral resonators of different frequencies along the feedline.

1Tobias Bier by private communivation.
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Figure 4.2: A fabricated double wound strongly coupled spiral
resonator at 6 GHz. Fluxtraps, 10 x 10 µm2 in size, were placed
on the groundplane.

Before measurements the protecting photoresist for dicing was removed from the chip with
aceton, isopropanol and ethanol baths. Then the chip was wire-bonded to a cryostatic sample
holder (see Fig. 4.3).

Figure 4.3: The chip’s launcher bonded to the sampleholder with
two bonding wires.

4.1.2 The Setup

After bonding the sample was attached to a dipstick (Fig. 4.4), covered with a Mu-metal magnetic
shield and placed inside a helium (4He) Dewar at 4.2 K. The sampleholder at the end of the dipstick
was conncected to a two port Vector Network Analyzer through coaxial cables made from copper
(in the upper part of the stick) and a copper-nickel alloy (used near the sampleholder to lower
the thermal conductivity). To lower the transmitted power and to suppress reflexions at the
connectors two 20 dB attenuators are placed in front and one 3 dB attenuator behind the sample.
Additionaly the signal passes through an HEMT2 amplifier suitable for low temperatures.

2Hot electron mobility transistor.
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Figure 4.4: Dipstick used for measurements. To lower the trans-
mitted power and to suppress reflexions at the connectors two
20 dB attenuators are placed in front and one 3 dB attenuator
behind the sample. Additionaly the signal passes through an am-
plifier suitable for low temperatures.

4.2 Measurement Results

4.2.1 Overview

Four resonances were observed in the VNA range (0.4 to 8.5 GHz). Since the measurement was
performed at 4.2 K which is quite high compared to the critical temperature of the superconducting
NbN (TC = 9.25K) we assume, that only the resonances of strongly coupled resonators were
observed due to large internal losses caused by thermal quasi particles. Figure 4.5 shows the
measured resonances.

Figure 4.5: Resonances as listed in Table 4.1 measured at 4.2 K.
The lowest dip, having the largest internal Q-factor, is also the
deepest.

To assure that the resonances were in fact due to superconducting resonators and not part
of the background their dependence on applied microwave power was tested. The resonance dips
changed significantly with applied power. At high powers (0 dBm) some dips even vanished. This
could be due to excitation of quasi particles, reaching of the critical current inside the resonator
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or simply warming up the resonator by power dissipation. The power dependence of resonances
shall be discussed in detail later.

By pumping out helium gas from the Dewar the helium vapour pressure was decreased inside
the Dewar and the system’s overall temperature was lowered to about 3.2 K. While the temperature
decreased, resonance dips became deeper and more dominant in comparison to the background
(see Fig. 4.6 and Fig. 4.7), as expected from dips which are due to superconducting resonators.
Table 4.1 lists the four observed resonances as well as the designed resonance frequencies. Though
the observed resonances are in the same range as the designed ones it is difficult to assign the
dips to certain resonators, because the shift is quite significant. For example the lowest resonator
designed at 5 GHz must have been shifted more than 1 GHz up. This can be due to fabrication
inaccuracies (specifically it is possible that the 5 µm widths of loops and the 5 µm distances
between loops are not transfered accurately to the substrate) and / or surface contamination.

Figure 4.6: Measurement at 500 mbar vapour pressure corre-
sponding to 3.56 K. Resonance dips become deeper at lower tem-
peratures, internal quality factors increase, thus assuring that res-
onances indeed are due to by superconducting resonators. The
lowest and most dominant resonance at 4.2 K is however absorbed
by the background.
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Figure 4.7: Measurement at 300 mbar vapour pressure corre-
sponding to 3.16 K. Resonance dips become deeper at lower tem-
peratures, internal quality factors increase, assuring that reso-
nances indeed are due to superconducting resonators. The lowest
and most dominant resonance at 4.2 K is absorbed by the back-
ground.

Frequencies of observed resonances / Ghz Frequencies of designed resonators / GHz

6.26 5
6.79 6
7.57 7
7.86 8

Table 4.1: Frequencies of observed resonances and the frequencies
of designed resonators. An assignment of observed resonances to
spiral resonators is difficult because the frequency shift is signifi-
cant compared to the resonator’s designed difference in frequency.
However the pairs 6.26 GHz - 6 GHz, 6.79 GHz - 7 GHz and 7.86
GHz - 8 GHz are in good agreement. In this case the 5 GHz
resonator must have been lifted by 2.57 GHz.

4.2.2 Quality factors

It was discussed in 2.3.2 that given an internal quality factor Qi and an external, coupling quality
factor Qc the overall quality factor Q can be calculated as

1

Q
=

1

Qc
+

1

Qi
. (4.1)
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The internal and external quality factors of a resonance dip can be determined by a procedure
called circle fit3 (for details see [21]). Employing this procedure we obtained all results on quality

factors. The given errors are χ2 values of the fits: χ2 =
∑

i
(Ei−Fi)2

Ei
, where Ei are measured

values and Fi values of the fitted curve. Hence the fit delivers good results if χ2 is small. Table
4.2 shows the quality factors of three observed resonance dips4.

Frequency / GHz Qi / 103 QC / 103 Error of Fit Power / dBm

6.26 2.8 0.30 1.9 · 10−4 -10
6.79 0.80 3.9 2.3 · 10−5 -10
7.86 0.19 0.72 4.3 · 10−4 -30

Table 4.2: Internal and coupling quality factors of three resonance
dips. Since Qcs were designed to be of the order of 103 they
are - with exception of the 6.79 GHz dip - lower than expected.
The internal quality factors also are low, which is not surprising
because the measurement was made at the comparatively high
temperature of 4.2 K.

4.2.3 Power Dependence of Resonances

Typically the resonance dip of a superconducting resonator exhibits a dependence on the power
transmitted through the circuit (chip). This can be due to excitation of quasi particles, reaching of
the critical current inside the resonator or simply warming up the resonator by power dissipation.

The 6.26 GHz Resonance

The four resonances from Table 4.1 show a power dependence, which is most striking in case of
the 6.26 GHz resonance as shown in Fig. 4.8.

3Because imaginary and real parts of S21 if plotted against each other sweeping through the resonance ideally
form a circle.

4The Q factor of the 7.57 GHz resonance was not measured because the resonance dip showed two S21 minima
(see 4.2.3).
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Figure 4.8: Amplitudes of the 6.26 GHz resonance at different
transmission powers at 4.2 K. The resonance dip becomes deeper
as power is lowered. It is deepest at -20 dBm. Also a frequency
shift is observable.

As is obvious from Fig. 4.8 lowering the transmission power shifts the resonance frequency to
lower frequencies. This effect is quite small (≈ −5MHz over the range from 0 to -50 dBm). The
shift is shown seperately in Fig. 4.9. Also the quality factors of the resonator vary with frequency
(see Fig. 4.10 and Table 4.3). Around -20dBm the internal quality factor is about ten times higher
than at other frequencies, here we also observe that the dip is deepest (Fig. 4.9). Also the lowest
internal quality factor is at 0dBm, meaning that here power dissipation inside the resonator is
highest.

Figure 4.9: Frequency shift due to transmitted power of the 6.26
GHz resonance at 4.2 K. Frequency decreases as power is lowered.
The shift is maximal around -20dBm, where the internal Q of the
resonator is highest and the dip deepest.
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Power / dBm Qi / 103 Qc / 102 Error of Fit

0 1.3 3.2 2.3·10−4

-10 2.6 3.0 1.7·10−4

-17 8.7 2.8 2.5·10−4

-19 14 2.8 3.0·10−4

-20 28 2.7 3.1·10−4

-30 3.3 3.0 6.1·10−4

-40 2.6 3.2 6.7·10−4

-50 2.5 3.3 7.1·10−4

Table 4.3: Power dependence of internal and coupling quality fac-
tors of the 6.26 GHz resonator. The internal quality factor shows
a maximum around -20dBm. The coupling quality factor remains
approximately constant. Since Qc is dominated by the geometry
of a resonator the observed behavior is reasonable.

Figure 4.10: Lowering the transmitted power strongly increases
the internal Q of the 6.26 GHz resonance above -20 dBm. At
lowest powers Q again falls. Measurement performed at 4.2 K

The 6.79, 7.57 and 7.86 GHz resonances

For the 6.79 GHz resonance we observe (Fig. 4.11) that the dip is becoming deeper as transmitted
power is decreased. Also a slight shift from lower to higher frequencies is observable. This shift is
approximately of the same magnitude as the shift of the 6.26 GHz resonator.
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Figure 4.11: The 6.79 GHz resonance dip becomes deeper as the
transmitted power is lowered. A slight frequency shift towards
higher frequencies is observable. The measurement was performed
at 4.2 K.

The power dependence of the 7.57 GHz resonance is pictured in Fig. 4.12. Above -10 dBm
the S21 data shows two minima: at 7.57 and 7.56 GHz. However the lower frequency minimum
disappears at powers below -10 dBm, whereas the 7.57 GHz dip remains visible. A possible
explanation is that one of this dips belongs to a weakly coupled resonator.
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Figure 4.12: At high powers the resonance at 7.57 GHz shows two
minima, however at lower powers the lower minimum disappears,
while the upper minimum becomes more distinct. The measure-
ment was performed at 4.2 K.

In case of the 7.86 GHz resonance we again see the dip becoming more distinct as the trans-
mitted power is decreased (Fig. 4.13). Here the effect is even more striking as in case of the 6.79
GHz resonance.
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Figure 4.13: Lowering the transmitted power, we observe that the
7.86 GHz resonance dip becomes more distinct. The measurement
was performed at 4.2 K.

4.2.4 Temperature Dependence of the Frequency and the Quality Fac-

tors of the 6.79 GHz Resonance

Lowering the vapour pressure inside the helium Dewar temperatures down to 3.2 K - corresponding
a vapour pressure of 300 mbar - were achieved. As the temperature was decreasing, the dips became
deeper and internal quality factors higher, also the frequencies shifted to higher values. Table 4.4
shows the temperature dependence of frequency and quality factor of the 6.79 GHz resonance.

Vapour pressure Temperature / K Frequency / GHz Qi / 103 QC / 103 Error of Fit

1000 mbar 4.2 6.79 0.80 3.9 2.3 · 10−5

700 mbar 3.9 6.82 1.1 3.7 1.1 · 10−4

300 mbar 3.2 6.84 3.4 1.7 4.5 · 10−3

Table 4.4: Temperature dependence of internal and coupling qual-
ity factors of the 6.79 resonance dip. Resonance frequency shifts
with temperature. For dependence of temperature upon vapour
pressure see Ref. [22].
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Conclusion

This thesis shows how the task of designing superconducting microwave spiral resonators was ap-
proached by means of electromagnetic simulation (using Sonnet) of created layouts (LEdit). The
designed resonators were measured and found to be functional, having resonance frequencies in
the range expected from simulations. The work also provides an overview of the basic properties
of superconductors and of lumped element resonator theory. A lumped elements model was intro-
duced to describe qualitatively the scattering parameters of a spiral resonator capacitively coupled
to a feedline and to understand the behavior of its quality factor.
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