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Zusammenfassung

Quantenbits, oder Qubits, sind heutzutage ein heiffes Thema in der Physik. Es gibt
Theorien, die belegen, dass ein Quantencomputer tatsichlich einige wichtige mathe-
matische Probleme in viel kiirzerer Zeit 16sen kann als ein herkémmlicher Computer
[43]. Der eigentliche Unterschied zwischen den Qubits und den klassischen Bits ist,
dass die Qubits den Regeln der Quantenmechanik folgen. Ein Bit kann sich nur in
einem der zwei Zustinde ,0 oder ,1“ befinden. Ein Qubit dagegen ist in der Lage,
jede beliebige Superposition a|0) +b|1) anzunehmen, wobei in der Quantenmechanik
die jeweiligen Zustdnde Grundzustand (]|0)) und angeregter Zustand (|1)) genannt
werden, und a und b komplexe Zahlen représentieren.

Qubits sind ausgezeichnete Objekte, um die Quantenmechanik tiefer zu ergriin-
den und um die Dekohérenz, die die eigentliche Verkniipfung zwischen der Quanten-
und der klassischen Physik darstellt, besser zu verstehen. Schon mit zwei oder drei
gekoppelten Qubits kann man die komplexe Zeitentwicklung jedes einzelnen Qubits
studieren, ohne sich dabei auf statistische Berechnungen von vielen Quantensys-
temen einschrinken zu miissen. Eines der vielversprechendsten Konzepte fiir die
Basis eines Quantencomputers sind elektronische Schaltkreise aus supraleitenden
Materialien. Im Gegensatz zu anderen Ansétzen ist bei supraleitenden Qubits die
Resonanzfrequenz einstellbar. Des weiteren lassen sich alle bekannten Bauteile aus
dem Gebiet der Elektrotechnik einfach an das Qubit anschliefen. Das vereinfacht
die Kontrolle und die Kopplung sehr. Die Initialisierung, die Operationen und das
Auslesen werden durch die Benutzung einer Stromquelle, eines Mikrowellengenera-
tors und eines Spannungsmessgerites gesteuert. Die Wechselwirkung zwischen den
Qubits wird durch induktive oder kapazitive Kopplung vermittelt. Ein anderer wich-
tiger Vorteil von supraleitenden Qubits ist, dass sie mit bereits etablierten Metho-
den wie Elektronenstrahllithographie oder Schrighedampfung (double angle shadow
evaporation) hergestellt werden.

Die Experimente in dieser Diplomarbeit wurden mit einem Phasen-Qubit durch-
gefiihrt. Ein Phasen-Qubit ist eine supraleitende Schleife, die durch einen Josephson-

Kontakt (JK) unterbrochen ist. Diese Schaltung ist auch unter dem Namen rf-
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SQUID bekannt. Das Verhalten dieses Qubits bei Temperaturen von einigen Mil-
likelvin wird durch ein Quasiteilchen mit einer Masse in einem ein-dimensionalen,
unharmonischen Potential festgelegt. Die Quantenvariable fiir das Potential ist der
Phasenunterschied der beiden Supraleiter quer durch den JK (Josephson-Phase). Da
das Qubitpotential von dem zirkulierenden Strom in der Schleife abhéngt, kann es
mittels eines angelegten externen Flusses kontrolliert werden. Dies wirkt sich auf die
Energieunterschiede der Quantenzustinde und somit auch auf die Resonanzfrequenz
des Qubits aus. Mittels Mikrowellenpulsen, die auf das Qubit geschickt werden, und
anschlieflender Messung des Qubits kann die Eigenfrequenz gefunden werden.

Bei Spektren von Phasen-Qubits werden Aufspaltungen der Resonanzkurve be-
obachtet. Die Erklarung hierfiir sind mikroskopische Zweiniveausysteme (ZNS), die
mit dem Qubit wechselwirken. Die eigentliche Natur der ZNS ist noch nicht vollstéin-
dig erforscht. Jedoch konnte der grofite Teil als Gitterdefekte identifiziert werden,
die in der Isolationsschicht des JK sitzen. Die Gitterdefekte sind auch als Tunnel-
systeme in Glisern sowie kristallinen Festkérpern bekannt. Aufgrund ihrer starken
Wechselwirkung mit dem Qubit werden die ZNS fiir die relativ kurzen Kohérenz-
zeiten des Phasen-Qubits verantwortlich gemacht. Auf der anderen Seite haben wir
experimentell bewiesen, dass die ZNS auch kohirentes Verhalten zeigen. In unse-
rem Fall war das Phasen-Qubit an zwei ZNS gekoppelt, deren Zerfallszeiten T die
des Qubits um einen Faktor von 4 iibertrafen. Des weiteren erfiillten diese ZNS die
Bedingung eines idealen Atoms: die Dephasierungszeit T5 ist durch T begrenzt, so
dass die Beziehung T, ~ 277 erfiillt ist.

Um das Verhalten der komplizierten Dynamik, die dieses dreiteilige Quanten-
system aufweist, zu verstehen, haben wir zwei Ansétze diskutiert. Der direkte Weg
benutzt den Formalismus der Dichtematrix. Dafiir wurde eine Simulation im Pro-
gram Matlab® geschrieben. Es berechnet die Zeitentwicklung der Dichtematrizen fiir
drei Quantensysteme mit je zwei Niveaus, die miteinander wechselwirken. Um auch
der Dekohirenz Rechnung zu tragen, wird in dieser Simulation die Mastergleichung
in der Lindblad Form fiir das komplette System bestehend aus 8 Niveaus gel6st. Die
einzigen Parameter, die die Simulation bendétigt, sind die Resonanzfrequenzen und
die Dekohérenzzeiten 77 und 75 der Untersysteme sowie die jeweiligen Kopplungs-
konstanten zwischen dem Phasen-Qubit und den zwei ZNS. Wir haben gezeigt, dass
sich die Dynamik durch dieses Model sehr genau beschreiben lésst.

Der andere Ansatz ist eher intuitiv. Wir haben die Repréasentation und die Zeit-
entwicklung eines Quantensystems bestehend aus zwei Zusténden auf der Blochspére
eingefiihrt. Der Zustand ldsst sich demnach durch den Blochvektor beschreiben. Das

ist ein Einheitsvektor mit einem Azimut- und Polarwinkel. Fiir einen bestimmten
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Hamiltonian ldsst sich die Zeitentwicklung des Blochvektors durch eine Rotation
um eine Achse veranschaulichen, die durch die Eigenzustinde des Hamiltonians be-
stimmt ist. Die Blochsphére erweist sich auch niitzlich bei der Betrachtung des
Qubit-ZNS sowie des ZNS-Qubit-ZNS Systems, wenn man sich sinnvoll auf einen
zwei-dimensionalen Unterraum einschrankt. Wahrend der Experimente hatte das
komplette System maximal nur eine Anregung, somit konnten Zustidnde, die hohe-
ren Anregungen entsprechen, vernachléssigt werden. Da der Grundzustand nicht mit
anderen Zustinden interagiert und somit die Rotationen nicht beeinflusst, wurde er
auch nicht beriicksichtigt. Jedoch muss man beachten, dass das System mit der Zeit
in den Grundzustand zerfillt und dass die Amplitude der Oszillationen zwischen
den Zusténden deshalb gegen Null konvergiert.

Das gekoppelte Qubit-ZNS System besteht aus vier Zustdnden. Somit bleiben nur
zwei Zustinde iibrig, deren Dynamik auf der Blochsphére sehr anschaulich erklért
werden kann. Wir haben die Eigenzustinde des Qubit-ZNS Systems in Resonanz auf
zwei Arten pripariert, einmal durch eine zweifache Rotation des Blochvektors um
die x- und z-Achse, und ein anderes Mal durch eine direkte Rotation um eine einge-
stellte Achse. Um diese Zustinde nachzuweisen, haben wir das Qubit in Resonanz
mit dem ZNS gebracht und das Verhalten der Wahrscheinlichkeit, das Qubit im an-
geregten Zustand zu finden, beobachtet. Gerade wenn die Eigenzustinde generiert
wurden, verschwanden die Oszillationen. Durch diese Kohirenz und Kontrollierbar-
keit beider Quantensysteme haben wir demonstriert, dass wir in der Lage sind das
Qubit und das ZNS in einen beliebigen Zustand zu priparieren. Des weiteren ha-
ben wir erklart, dass sich diese Messdaten auch als eine Tomographie interpretieren
lassen. Durch die Einschrinkung auf den zwei-dimensionalen Unterraum entsteht
namlich ein Hamiltonian, der exakt die gleiche Form hat wie der eines Qubits, das
von Mikrowellen angetrieben wird.

Des weiteren haben wir zum ersten Mal kohdrente Dynamik zwischen zwei ZNS
hergestellt und diese miteinander verschriankt. Um auch die Dynamik des dreiteiligen
ZNS-Qubit-ZNS Systems auf der Blochsphére zu visualisieren, nutzten wir den rela-
tiv groften Energieunterschied der zwei ZNS zueinander von mehr als 200 MHz aus.
Wenn sich also das Qubit in Resonanz mit einem ZNS befindet, entspricht die Zeit-
entwicklung des zweiten ZNS der eines freien Quantensystem. Die Verschrinkung
beider ZNS kommt zustande, indem man erst das Qubit mit einem ZNS verschriankt,
und dann die restliche Anregung des Qubits auf das zweite ZNS iibertrigt. Auch das
haben wir bewiesen. Das System ZNS-Qubit-ZNS wurde einmal in einen verschrank-
ten und ein anderes Mal in einen separablen Zustand der beiden ZNS pripariert,

wobei sich das Qubit nach der Priparation in seinem Grundzustand befindet. Nach
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einem zusétzlichen Mikrowellenpuls konnten wir unterschiedliche Oszillationen be-
obachten. Wihrend die Schwingungen des verschrinkten Zustandes nur die Frequenz
aufwiesen, die dem Energieunterschied der beiden ZNS entspricht, zeigten die Oszil-
lationen des separablen Zustandes alle vier Frequenzen der jeweiligen Unterschiede
der Energieniveaus.

Unsere Experimente zeigen somit das grofe Potential des Phasen-Qubits, exis-
tierende mikroskopische zwei-Niveau Defekte in Festkorpern quantenmechanisch zu
manipulieren. Deshalb erscheint es naheliegend, die ZNS als einen eingebauten Quan-

tenspeicher oder sogar auch als eigensténdige Qubits zu benutzen.
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Chapter 1
Introduction

Quantum bits, or qubits, are at the present time a hot topic in physics. In fact, some
mathematical problems can be solved on a quantum computer in much shorter times
than on conventional computers |43]|. The key difference of the qubit in comparison
to a classical bit lies in the laws of quantum mechanics. While a state of a bit is
either “0” or “1”, a state of a qubit is an arbitrary superposition a|0) + b|1), where
|0) and |1) are referred to as the ground and excited state, respectively, and a and
b are complex numbers. Thus, qubits have to be two-level quantum systems with
sufficiently long coherence times. They must be controllable, i.e. one is able to initial
them in an arbitrary state and perform a readout. Furthermore, it should be possible
to couple qubits for establishing quantum gates and to extend the qubit array to
a desired number of qubits. These are the criteria postulated by D. DiVincenzo in
the year 2000 [16] which identify a quantum system as a qubit. The set of qubits
fulfilling these requirements constitutes the base of a quantum computer.

Although a computer based on quantum manipulation is not yet implemented,
qubits already spark great interest in the physical society. Qubits are excellent
objects for getting deeper understanding of quantum mechanics and decoherence
effects that constitute, in fact, the link between quantum and classical physics. On
one hand, the full control over one qubit requires a connection to the laboratory
equipment. On the other hand, the qubit has to be sufficiently isolated from the
noisy environment to ensure long coherence times. Therefore, most experiments are
still the topic of fundamental research. By coupling only two or three qubits it gets
possible not only to prove theoretical predictions on an expectation value of many
quantum systems, but also to observe the complex state evolution of each qubit
independently.

There are many approaches in realizing qubits. For example, photons [29], elec-

tron spins [33|, nuclear spins [27], trapped ions [7] or NV centers in diamonds
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(nitrogen-vacancy centers) [5] were experimentally proven to serve as qubits. How-
ever, the most promising concept nowadays to create qubits for quantum computa-
tion is based on electrical circuits made of superconducting materials. In contrast to
other concepts, their resonance frequency is tunable. All standard elements known
from electrical engineering can be connected to the qubit just by wiring. This fea-
ture makes the controlling and coupling very easy. The initialization, operation and
readout of the qubit are controlled by using a current source, a voltmeter and a
microwave generator. The interaction between qubits can be established either by
inductive or capacitive coupling. Furthermore, superconducting qubits are made
on chip using standard techniques like electron beam lithography or double angle
evaporation.

Superconducting qubits are based on the effect of the Josephson junction (JJ).
The JJ is a tunneling barrier which separates the superconducting layer by an insula-
tor. Due to the junction capacitance and the non-linear Josephson inductance these
qubits can be compared with non-linear LC-resonators. Thus, they are multi-level
systems with non-equidistant level separation. That is a crucial factor for quantum
computation. The two lowest states are defined as the ground state |0) and the
excited state |1).

Superconducting qubits are subdivided in three main types: charge, flux and
phase qubits. Charge qubits are working only with one Cooper pair that tunnels into
or out of a superconducting island. The basis states of a flux qubit are superpositions
of the current flowing clockwise or counterclockwise. A phase qubit is based rather on
current than on charge, and the levels result from the quantization of an anharmonic
potential. Since couple of years also combination of these approaches were presented
to the scientific society, e.g. quantronium [53], transmon [46] or fluxonium [34].

Since the resonance frequency of these qubits can be adjusted, one can record
its spectrum. In many experiments, the spectrum possesses avoided level crossings.
They appear due to microscopic two-level systems (TLSs) coupled to the qubit.
The nature of TLSs is still unknown. However, the majority was identified to be
lattice defects, which are also known as tunneling systems in glasses as well as in
crystalline solids. Due to their strong interaction with the qubit they are held to
be responsible for the decoherence effects in superconducting qubits. On the other
hand, they constitute also coherent quantum systems, and it was even suggested to
use them as quantum memory.

We found that our sample possesses two TLSs whose decay times exceed that
of the qubit by a factor of 4. Furthermore, their dephasing time 75 is limited
by the decay time T; fulfilling the relation T5 ~ 277 as it would be the case for
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an ideal atom. Therefore, one can also think to use them as qubits. This work
presents experiments on a Josephson junction phase qubit strongly coupled to these
two TLSs. The operation regime of the phase qubit is summarized in the second
chapter. In the third chapter, the theory required to understand the behavior of the
quantum systems is explained. The measurements that prove coherent dynamics
between the qubit and one TLS and between the two TLSs mediated by the qubit

are presented in the forth chapter.



Chapter 2
Basics of the phase qubit

To understand the behavior of the phase qubit, we have to analyze its elements.
As mentioned in the introduction, superconducting phase qubits can be compared
with LC-resonators. They possess some capacitive and inductive elements, and
therefore form a multi-level system. However, a LC-resonator can not serve as a
qubit since all transitions between neighboring states are degenerated. For qubit
operations, however, the transition frequency between the states |0) and |1) has
to be sufficiently different from other transition frequencies. Due to this reason,
superconducting qubits need a strong non-linear element to ensure non-equidistant
level separation. That can be achieved by using the Josephson tunnel junction (JJ).
It is described in the first section.

In fact, the first proposal for a phase qubit was just a current biased JJ [14, 36].
However, this approach was abandoned. Since it requires a galvanic connection to
the laboratory equipment, the decoherence times are too short. Nowadays, a phase
qubit consists of a JJ enclosed in a superconducting loop (rf-SQUID |3, 8|) and
is controlled via mutual coupling to a flux biasing coil. The readout is done by a
de-SQUID magnetometer which is also inductively coupled to the qubit [32, 8]. The
principles of the rf-SQUID and the qubit operation will be discussed in the second
section. The chip that served for experiments in this thesis is presented in the third
section. In the forth section, designs of a phase qubit consistent with Aluminum
double angle evaporation technique (designed for IPHT, Jena) are presented. Un-
fortunately, due to technical problems and complexity of the chip it has not arrived

yet so that I can not present experimental data.
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2.1 Josephson junction

2.1.1 Josephson equations

A problem where two superconductor bulks are interrupted by a weak link was
considered by B. D. Josephson. A weak link is a small area where the number of
Cooper pairs in comparison to the number in the outlying regions is decreased. A
narrowing of the superconductor strip line is an example of the weak link. Another
interesting example is a carbon nanotube [28]. In our case, the weak link is a
thin insulating layer between two overlapping strip lines. Josephson formulated
his famous equations in 1962 |26] where he predicted a supercurrent through the
junction. He was honored with the Nobel prize in 1973, and in his honor the weak
link is referred to as the Josephson junction (JJ).

We follow here the analysis of [32]. According to the theory of Ginzburg and
Landau [45], a superconductor is described as a condensate defined by a single wave

function ¥
U = Wy (7, 1)@, (2.1)

where ¢ is a collective phase and the wave function is normalized to the density of
the Cooper pairs. When considering two superconductors coupled through a weak
link with each other, they may have different collective phases, denoted as ¢; and

¢2. The Josephson equations depend only on the Josephson phase

Y =01 — ¢2 (2.2)

which is defined as the difference between the two collective phases. The first Joseph-

son equation predicts a supercurrent through the JJ
Is(t) = I.sin p(t). (2.3)

I. is the critical current which in turn depends on parameters of the superconductor
and on the geometry of the JJ. The first Josephson equation tells that a current
biased JJ with a current Ig less than . will still be superconducting and will not yield
a voltage drop. The second Josephson equation gets important when considering

currents above I.. The resulting voltage drop fulfills the relation

v, (2.4)

,726
L

2 MHz
= —V =~ 27 - 483.
% (I)ov 7 - 483.6 %

where &g = h/2e is the magnetic flux quantum and e is the electron charge. Thus,
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when there is no voltage drop across the junction, the time derivative of the phase
evolution is zero. In contrast, the “velocity” ¢ is proportional to the voltage drop
with the characteristic factor of the JJ.

2.1.2 The RCS.J model

The rather complex dynamics can be understood by using the RCSJ model [51, 40].
This model is only valid for small JJs. This is the case when its dimensions are
significantly smaller than the spatial variations of the Josephson phase, typically
5-30 pm. In contrast, when considering long JJs, the distribution of ¢ across the
junction has also to be taken into account.
According to the RCSJ model, a small JJ consists of three elements in parallel:
a superconducting element according to Eqs. (2.3) and (2.4), an ohmic resistance R
and a capacitance C' (upper part in Fig. 2.1(a)). R is responsible for the damping
and thus for the loss of energy. C'is the geometrical capacitance. It will be also
important in further analysis. To reduce the resonance frequency of the qubit, an
additional capacitance C.,; can be connected in parallel to the Josephson junction
so that
C'=0Cj+ Ce, (2.5)

where (C'; is the intrinsic capacitance of the JJ due to the overlap of the strip lines.
According to Kirchhoff’s law, the total current flowing through the junction reads

1 P

D .
’ — . 2.
R27r<'0+027r(p (2:6)

vV .
O:—I—I—IcsingaqLE—kCV:—I+Icsin<p+

We can compare this equation with a particle in a one-dimensional potential U(z).
According to classical Hamiltonian mechanics, the equation of motion reads
oU (x)

— i+ Di 2.7
0 = mi + Tt (2.7)

where m is the mass of the particle and D is the damping constant. By multiplying
Eq. (2.6) with ®y/27 and identifying x with ¢, we find the corresponding factors to
be

. (I)O 2 . m
m=C (§> , D= o and (2.8)
I.® I
Us(p) = QWO (—I—so — cos w) : (2.9)

By introducing the Josephson energy E; = I.®y/27 and normalizing the total cur-
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rent flowing through the junction v = I /1., we can rewrite Eq. (2.9) as

Us(p) = Es(—yp — cosp). (2.10)

This “washboard potential” is plotted in Fig. 2.1(a) for three different ~. For currents
near [. the particle can tunnel and run down the potential. This results in a voltage
drop across the JJ. The angular resonance frequency wy can be obtained by solving
the differential Eq. (2.7). For small underdamped JJ (low damping factor) the

expression for wy reads

1 d?U
wp = —— = Wy /COS P = W,/ 1 — 72, (2.11)

m dy?

where the angular plasma frequency w, has been introduced:

2ml,
Wy = ”CDOC" (2.12)

One can see from Eq. 2.11 that the resonance frequency decreases with biasing. At

a bias current of I = I, wq is zero. We introduce here the Josephson inductance L ;

according to the relation
1

VL,C’

wy = (2.13)

Thus,
o, 1 1

T o, Ccos ~ 00 o(t)’

L, (2.14)

where we have defined L;, = ®q/27I.. Note that the expression for L, is consistent
with the standard definition of the inductance L = V/I. However, the nature of
this inductance is not a stored energy in the magnetic field. The inductance can
be rather explained by the kinetic inductance [14, 45| known from the behavior of

superconductors at high frequencies.

2.2 The phase qubit

2.2.1 From the current biased Josephson junction to the rf-
SQUID
In fact, a phase qubit was initially defined as a current biased Josephson junction

[14, 36]. The usual frequencies for JJs lie in the microwave range with frequencies

around 5-20 GHz. For example, a frequency of 10 GHz corresponds to a temperature
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(a) (b)

—27

Figure 2.1: (a) Upper part: circuit for a current biased JJ. Lower part: The washboard
potential is drawn for different current biases. (b) Upper part: circuit for a flux biased rf-
SQUID. Lower part: The potential is plotted for different 3-parameters at @,y = Po/2.
The potential for 87 = 3 is also shown for ®.,; = 0 (dashed, light blue curve)

of T'=hf/kp ~ 500 mK. To ensure that the first excited state can not be populated
due to thermal photons, the operating temperature has to be significantly lower.
This can be achieved by using a Dilution refrigerator since it can reach temperatures
of ~10 mK [23]. Tts mode of operation can be compared with evaporative cooling.
At temperatures below 1 K, a mixture of two isotopes 3He and *He undergoes
spontaneous phase separation to form a He-rich phase and a 3He-poor phase. A
transition of *He atoms from the 3He-rich phase to the 3He-poor phase costs energy
which results in a cooling effect. The volume in which this takes place is known
as the mixing chamber. In a continuous circulation process, the *He/*He-mixture
is pumped from the side of the He-poor phase, outside the mixing chamber 3He is
separated from “He (3He has a lower boiling temperature) and delivered back to the
mixing chamber to the 3He-rich phase.

By biasing the JJ with a current, the resonance frequency can be adjusted (Eq.
2.11). Then, the qubit operation is performed by combining the dc-current with the
microwave signal. The readout is managed by a short current pulse which tilts the

potential so that the particle tunnels and runs down the potential if it is in the excited
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state. Thus, by measuring the voltage drop across the JJ the state of the qubit can
be determined. The first experimental data were published by J. Martinis et al. in
2002 [38] which proved that a current biased JJ can perform all operations needed
for a single qubit: initialization, Rabi oscillations and readout. The qubit possessed
a decay time of 20 ns. The decoherence times could be increased by using a new
design. The JJ was enclosed in a loop [36] and controlled by an externally applied
flux, the readout was done by a de-SQUID magnetometer coupled inductively to
the qubit. This reduced the number of quasiparticles (electrons) in the JJ since
the qubit was not switched to the dissipative regime for the readout. The resonance
spectrum of that qubit with the new design possessed a large number of avoided level
crossings [48] due to two-level systems (TLSs). TLSs are tunneling systems known
from glasses and amorphous materials. Since they strongly interact with the qubit
they reduce its decoherence time. A large number of these two-level defects was
identified to be located in the insulating layer of the JJ itself [37]. The next boost
was then achieved by significantly decreasing the area of the JJ. By increasing the
critical current density, I, and E; can be kept constant. A big capacitor shunting
the JJ compensates the small intrinsic junction capacitance C; and pulls down w,
(Eq. 2.12) [50].

2.2.2 rf-SQUID

A rf-SQUID is a superconducting loop interrupted by the JJ which is inductively
coupled to the current source (upper part of Fig. 2.1(b)). A detailed analysis of this
circuit one can find in [3]. An externally applied magnetic flux ®.,; induces current
in the loop which opposes the external flux. The total flux ®,,; in the rf-SQUID can
be expressed as

Dyt = Pegt + Lgeol = Pyt — Lgeolosin o, (2.15)

where L, is the geometrical inductance of the loop and I is the current circulating
in the loop. Note that ¢ is negative indicating the suppression of the external flux.

Due to the flux quantization in a superconducting loop we find ¢ to be

(I)tot

Do

© =27 (2.16)

Thus, the circulating current I can be expressed as

(I)tot - q)emt (I)O q)ewt
I = = -2 . 2.17
Lyeo 27 Lyeo (“0 "B, ) (2.17)
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The new potential U(y) is the sum of the magnetic energy Ly.,/?/2 and the junction
energy U;(p) given in Eq. (2.10) [32].

Ulp)=E; (1 —cosp + (o= 27;¢ext/q)0)2) , (2.18)
AL

where [y, is defined as
~ 2mLgeole  Lyeo

2.19
0% Ly ( )

Br

the ratio of the geometric and the Josephson inductance. That potential is plotted
for different Gy, in Fig. 2.1(b). Aiming the rf-SQUID to operate as a phase qubit,

0O, has to satisfy
1< (B, < 4.6. (2.20)

There are two reasons for that condition. On one hand, it should be possible to
initialize the qubit. Therefore, the potential should have at a particular flux bias,
e.g. ®.r = 0, only one well. That corresponds to the upper limit of G;. On the
other hand, the readout of the qubit is only manageable if there are at least two
wells in the qubit potential. By applying a flux pulse the potential is tilted so that
the quasiparticle tunnels to the other well if it is in the excited state. That defines

the lower condition for (.

T
Es =224 GHz
Es = 15.3 GHz
Fy =7.77 GHz
E() =0

Figure 2.2: The small left well of the double well potential (Eq. 2.18) at ®.,; < P and
the corresponding wave functions are shown. The curve simulates the potential of the
chip used in this thesis (Sec. 4.1.1) at an external flux of 0.81®j. The parameters are:
I = 1.7uA, L = 720 pH, C = 850 {F and G, = 3.6.

J. Lisenfeld wrote a function in the programming language Matlab® [32] which

calculates the eigenenergies and eigenstates of the potential given in Eq. 2.18. As
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parameters, the function requires the critical current I., the capacitance C, the loop
inductance L and the reduced external flux & = &.,,/®(. For the parameters of the
chip used in this thesis (see next section) the result of that function is shown in Fig.

2.2 for a reduced external flux of 0.81.

2.3 Designing a phase qubit with aluminum double

angle shadow evaporation

2.3.1 The method

The technique of metal deposition from two angles was invented by G. Dolan [17].
In comparison to other fabrication processes, the double angle evaporation method
allows to design JJs with a very small area and small critical currents by using one
run and one mask only. The wafer is first covered by two resists. A sketch of the
mask of a JJ can be seen in the upper part of Fig. 2.3(a). The hatched rectangles are
the areas where the upper resist has to be removed. It is developed in a usual way
using e-beam lithography. Due to the structure of the lower resist, it is developed
faster than the upper one. This forms a resist profile with an undercut, and if the
width of the upper resist is thin enough a “Dolan bridge” is created. This situation
is drawn in the lower part of Fig. 2.3(a). The black thick line symbolizes the Dolan
bridge. Al is sputtered first from one side (left red arrow). Then, O4 is added so
that aluminum oxidizes resulting in a thin layer of A10,. Afterwards, Al is sputtered
from the other side (right red arrow). The result is displayed in the middle sketch of
Fig. 2.3(a). Far away from the JJ, there is a double layer of Al. Near the junction,
there is only one layer of Al since each of these two regions was one time in the
shadow of the Dolan bridge. Directly under the Dolan bridge, there is a double
layer of Al which forms the JJ. Note that if the direction of a superconducting strip
line is transversal to the Al evaporation, its width is enlarged. This situation is
displayed on the right hand side of Fig. 2.3(a).

For example, a flux qubit fabricated with that technique one can see in Fig.
2.3(b) [6]. There, the junction area of the small JJs is approximately 0.05 pm? and
the critical current density is 1000 A /cm?. The charge and the flux qubits are rather
small objects and require small junctions because their potential is rather given by
the junction parameters than by the geometrical inductance. Thus, it does not
constitute a problem to fabricate the whole qubit with the double angle evaporation
method. In contrast, a phase qubit needs a large inductance. Usually, the loop

2

for a phase qubit spans over an area of 100x100 pm* and possesses two or three
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Figure 2.3: (a) Al double angle shadow evaporation. Upper part: The mask for one JJ.
The small interruption in the strip line will be the “Dolan bridge”. Middle part: The result
after the evaporation. Lower part: the lower resist (brown) develops faster than the upper
resist (black). This creates an undercut and so the Dolan bridge. Al is sputtered on the
sample first from one side, and after oxidization of Al from the other side. (b) A flux qubit
fabricated by the double angle evaporation method. [6].

turns (the connection between different layers is made with vias). Such structures
are fabricated by using photo or e-beam lithography, they can not be realized with

double angle evaporation.

2.3.2 The chip design

Like in the case of fluxonium qubit [34], we decided to use additional large JJs to
increase the inductance of the qubit (Fig. 2.4). We designed some chips from IPHT
(Jena, Germany), and so our design has to fit their requirements. The angle of the
Al evaporation is +30° from the vertical axis. The thickness of the lower resist is 290
nm which results in a maximal overlap of 335 nm for zero width of the Dolan bridge.
We decided to fix the overlap of the junctions to 200 nm. Thus, the Dolan bridge
has a width of 120 nm and a length of 1.5 um for the large junctions. According to
the experience of IPHT, this construction should be stable. With a critical current
density of 200 A /cm? the critical current I! and the Josephson inductance L} (Eq.
2.14) are

Il =0.6pA and L)) = 1.6 nH. (2.21)

The superscript letter [ denotes the values for the large junction.
The Josephson energy depends on the critical current and therefore on the small

junction. Since there will be a circulating current in the loop we have to ensure that
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(2)

Figure 2.4: The design of the chip for IPHT, Jena. (a) The coplanar waveguide resonator
(light blue) is shown. The qubit (c) is inductively coupled to the resonator. Above the
qubit one can see the bias line. A part from the array of 13 large junctions is shown in (b)
and the small junction in (d). A cutout of the interdigital capacitor is drawn in (e)

the Josephson phase of the large junctions does not change significantly, otherwise
their inductance will not be constant. One can easily estimate, that if the critical
current ¢ of the small junction is by a factor of 3 smaller than I' than even at a
circulating current of /7 in the loop the inductance of the large junctions increases
only by a factor of 1.06. Thus,

1
I = gli = 0.2 A and L, = 4.8 nH. (2.22)

For a phase qubit I is small, since the height of the potential is defined by E;. In
comparison, the large junctions in the fluxonium qubit are also around a factor three
larger that the small junction. However, since fluxonium is assigned to the type of
charge qubits, the critical current of the small junction is designed to be ~ 20 nA.

The next aspect concerns the area of the loop. The area should have a maximal
possible value. First of all, the qubit will be inductively coupled to a resonator.
Second, for a reasonable (;-parameter (Eq. 2.19) the inductance of the loop should
exceed the inductance of the small junction by a factor of 4 (preferable). We decided
to fabricate the loop with an area of 200x30 um? with a width of the strip line of 0.5
pm. This corresponds to a geometrical inductance of Lg., = 0.5 nH (calculated by
the program FastHenry). According to the theory, we can increase the [, -parameter
by additional large JJs in the loop. We decided to have 13 large JJs, which results
in a (B, factor of 4.4.

Finally, we have to adjust the shunt capacitor. A reasonable plasma frequency
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for a phase qubit lies in the range of 10 — 15 GHz. By using Eq. (2.12), the value for
the capacitance is ~ 100 fF. Since we have to work in only one layer, the capacitor
has to have a long, interdigital form. We fixed the thickness of the fingers to be
1.5 pm to ensure that they will not break due to the undercut. The length of the
fingers and the distance between them is 25 ym and 1 pum, respectively. Thus, the
capacitor prolongs the width of the qubit of 30 um. The capacitance for a pair of
fingers was simulated to be 2.64 fF (program SONNET ®), test version). To have
100 fF we need 38 finger pairs resulting in a total length of 150 pm.

The whole qubit with a total area of 350x30 ym? was embedded in a coplanar \/2
resonator made of Nb. The width of the central line is 60 pum and the gap between
the central line and ground is 31 um. This results in an inductance and capacitance
density of £ = 405 nH/m and C = 160 pF/m so that Z = \/E_/C ~ 50Q2. The
resonance frequency and the quality factor of the resonator are designed to match 9
GHz and 10* (length of resonator: 6450 um, gap of the capacitors in the central line:
25 um), respectively. At these frequencies the qubit has 2-3 levels. For the bias line of
the qubit the ground of the resonator was interrupted. Before the measurement, we
plan to connect the two grounds via bonding wires. The coupling strength between
qubit and resonator was estimated to be ~ 50 MHz. All parameters concerning

qubit and resonator are summarized in Tab. (2.1).

(a) (b)
small JJ | large JJ resonator - | bias line -
area [pm?| | 0.2x0.5 | 0.2x1.5 qubit qubit
I, [pA] 0.2 0.6 ‘ mutual 100 20
E; |GHz| 99 300 inductance |pH]
Ly [nH | 16 0.55

Table 2.1: (a) The parameters of the small and large JJ. (b) The mutual inductances
between qubit and resonator, and qubit and the bias line.



Chapter 3
Two-level quantum systems

This chapter summarizes the theory necessary to understand the physical behavior
of a qubit coupled to two-level quantum systems. The first part considers the two-
level quantum system in general. The Bloch sphere is introduced to represent the
quantum states as vectors and to visualize the time evolution. The master equation
in the Lindblad form is explained and applied on three examples (Rabi oscillations,
Relaxation and Ramsey fringes). The second part introduces the parasitic two-level

systems (TLS) and their coupling to the qubit.

3.1 Two-level quantum system

A two-level quantum system is the basis of any coherent dynamical processes on
quantum scale. Even such complex and macroscopic objects like superconducting
qubits are well described by quantum mechanics. Almost all applications like e.g.
quantum information processing [56] or single photon source [22]| use the lowest two

levels.

3.1.1 Description of the Bloch sphere

Let us start this chapter by considering a quantum system described by an usual

time-independent Hamiltonian H

H:<E g/2>, (3.1)
g /2 0

where g is the coupling strength with a possible complex phase. In the case of g = 0,

the eigenstates of the Hamiltonian are the ground state |0) and the excited state |1)

15
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with corresponding energies 0 and E. The vectorial notation for theses states is

o =(3) 1= (). (32)

Any quantum mechanical state |¢)) of this system can be expressed as a super-
position of the basis states with complex coefficients. These four degrees of freedom
shrink to two after normalizing and setting the phase of the ground state to zero.

Thus, [¢) can be written as

6 o in ¢ ¢i¢
) = cos 510) +sin 5 e 1) = (sm2 y ) (3.3)

Figure 3.1: Bloch sphere. Quantum states and (x,y,z)-representations: |0) (0,0,-1), |1)
(0,0.1), [=)=(10)=[1))/v2 (-1,0,0), [+)=(0)+[1))/v2 (1,0,0), [+3)=(|0)+i[1))/v2 (0.-
1,0), |[—3)—(]0)—=i[1))/v/2 (0,1,0). The state 1) (red bold arrow) is defined by the angles
0 and ¢.

This representation is very convenient because it is possible to represent the state
graphically by a vector on a so called Bloch sphere (Fig. 3.1). The Bloch sphere is
located symmetrically on a right-handed coordinate system with a radius of 1. The
ground state |0) is placed on the bottom (z = —1) and the excited state |1) on top
(z = +1). On the x-axis, the states |—) (z = —1) and |+) (x = +1) and on the
y-axis the states |+;) (y = —1) and |—;) (y = +1) are located. These states are

defined as follows:
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‘+>:M. I—) = 0) — 1) _ |0) +4|1) 0) —i[1)
\/§ 7 \/5 ’ \/5

Please note here the similarity of the definitions. The factor in front of the

|_i> = (3-4)

lower state |0) is always real and positive. And only the state |1) may have a phase
resulting from the complex coefficient. Although the cosine term in Eq. (3.3) might
be negative for some #, one can always make it positive by multiplying the state by
—1. The representation of the state i as a vector on the Bloch sphere then follows
automatically from the angles 6 and . For example, if § = 0° we have the ground
state. 8 = 90° and ¢ = 90° result in the state |—;). Since the Bloch sphere is not
only spanned by the quantum states but also by the x-,y-,z-axis it is obvious to find
also an expression of the quantum mechanical state in the (x,y,z)-representation.

One can easily verify that the components of the position vector 7" can be written as

ri = Wlojlb), j € {z,y, 2} (3.5)
with o, being the Pauli matrices |42|. Then,

sin 6 cos ¢
7= | sinfsiny | . (3.6)

—cosf

Let us now come back to the Hamiltonian in Eq. (3.1). The eigenenergies are

E 1

|th+) denote the eigenstates. They can be expressed as

o a sin @ e~
1) = cos —|0) +sin — e |1) = ( 2 ) and (3.8)
2 2 cos 5
a ,—if3
o a @ gy [COsG e
[4_) sin |0) 4 cos 5 € 1) ( _sine ) (3.9)
with § = phase(g), tana = —%. (3.10)

[ is here the phase of the coupling strength g when it is written in the form g =
|g|exp(i3). Tt is necessary to mention that the states [ ) and [¢)_) always point
into opposite directions on the Bloch sphere. This results from the fact that all
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eigenvectors of different eigenvalues of a hermitian matrix are lying in orthogonal
subspaces. Due to the factor 1/2 in front of the angle o we have to add 180° to « of
e.g. |[14) to get the orthogonal state |¢)_). The states |1)4) are thus forming an axis

which will be very important when regarding the time evolution of a Bloch vector.

3.1.2 Time evolution and rotation

The time evolution of a two-level quantum system starting with an arbitrary state
|1) is well known. Here we want to show the corresponding time dependent behavior
of the Bloch vector.

Let |tg) have the form

(4

0 .0 sin & e~
|10) = cos §|O> +sing e “11) = ( C(Z)SQ ) (3.11)
2

The time evolution of this state is given by the Schrodinger equation

d

d ?
) = S UDlo) = —2 HU(B)]t), (3.12)

where U(t) denotes a unitary matrix. We use standard methods to solve this equa-
tion. First, the coordinates of the initial state are transformed to the basis of the
eigenstates of H. Thus, the Hamiltonian gets a diagonal form where the entries are
the eigenenergies. After that, the resulting vector is transformed back. The time

dependent unitary operator U(t) can then be rewritten as
U(t) — efth/fL — Be*iDt/thl (313)

with the unitary matrix! B and the diagonal matrix? D

B = (sin% e cosg 6_2ﬂ> and D = (W/Q 0 ) ) (3.14)

o —sin2 _
cos sin § 0 w/2

where

E2 2
W= —V;g. (3.15)

Note here, that the matrices B and D are expressed in such a way that the state

'The columns of the matrix B are the new basis vectors w;. B then describes the coordinate
transformation from the new basis to the Cartesian one: B-(e;)w = w;, and thus (e;)w = B~ -w;.

2Originally the eigenenergies of |¢1) are E4 (Eq. 3.7). The equal terms E/2 are not important:
U'(t) = BelPHE/20t/hp=1 — [J(t) . ¢!Ft/2h  The additional complex factor e** with unity length
doesn’t affect the behavior of U (t).
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|1, ) has higher energy than the state [¢)_). The resulting unitary operator is

cos £t + 4sin £t cos « —isin Yt sin e
U(t) = ( 2 2 2 ) . (3.16)

—4sin %t sin o €8 cos %’t — ¢sin %t Ccos

(b)

10)

Figure 3.2: (a) Time evolution of a Bloch vector (red arrow without contour): the vector
rotates around the axis formed by the eigenstates of the Hamiltonian |¢y) (dark grey
arrow) and [¢_) (grey arrow) with £ > E_. The curved red arrow with the dark edge
shows the direction of rotation. (b) Visualization of (a) with the right-hand rule. The
thumb points into direction of the energetically higher state [i;)

Let us now visualize this time dependence on the Bloch sphere. Therefore, we

compare U(t) with the standard expression for an unitary rotation matrix
5 .. 5 N —
Rz(6) = ]lcos§ —isingi- o (3.17)

which rotates a vector around the unit vector @ = (n,,n,,n.) by an angle ¢ 32|
The vector & = (0, 0y, 0,) symbolizes the set of Pauli matrices. Thus, we find that

d = wt and 7 is pointing exactly to the state [¢) fulfilling Eq. (3.6)

sin «v cos (3
7= |sinasing | . (3.18)

— COS

So, for future experiments we can find the time evolution of the Bloch vector very

easily. The matrix in Eq. (3.17) and thus also U(t) are satisfying the right-hand



CHAPTER 3. TWO-LEVEL QUANTUM SYSTEMS 20

rule. This means, if the thumb of the right hand is parallel to the rotation axis
defined by the eigenstates and is pointing to the energetically higher state, then the
other fingers show the direction of rotation of the Bloch vector (Fig. 3.2).

3.1.3 Density matrix and Lindblad equation

The formalism of density matrix was introduced by Lev Landau [30] and inde-
pendently by John von Neumann in 1927. The density matrix allows not only to
describe a pure state which is a superposition of the basis states but also statistical
mixtures. Therefore, this representation is crucial when considering the preparation
and time evolution of a quantum system in thermal equilibrium including the effects
of decoherence. The expectation value of many measurements on one system (e.g.
qubit or TLS) can be reproduced as well as the expectation value of one experiment
on an ensemble consisting of many systems (e.g. the effective spin of many atoms,
tunneling systems in solid materials).

The density matrix p is defined as
p=> il W, Y pj=1p; >0, (3.19)
J J

where |1);) are pure states. The sum over more then two different pure states yields a
statistical mixture. The main idea is to have a matrix where the diagonal reflects the
probability to measure a system in a particular state. Therefore, the trace always
has to be 1. The non-diagonal entries shed light on the coherence of the pure states
of one system or entanglement between different subsystems.

Let us consider some special cases to demonstrate these ideas. For the ground

state and the excited state,

0 0 10
po = 10){0] = (0 1) > =1 = (o o> : (3.20)

For example, we have prepared the qubit in the excited state. Due to relaxation,
after some time the probability to measure the qubit in the state |1) will be only

0.5. This is exactly the case of a statistical mixture without any coherence:

0.5+ 05p0 = [0 1 (3.21)
Pmixt -9P1 900 0 0.5 . .
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In contrast, the density matrix for the pure states |+) is

1 1 1 -1
pr=|4)(+ =05 (1 1) o=l -=05 (_1 1 ) . (3.22)

Here, the off-diagonal entries clearly identify these pure states. If the system in this
case is not affected by relaxation but only by so called dephasing, the result will be
that only the off-diagonal terms will vanish with time. Thus, both density matrices
p+ will pass into ppie (Eq. 3.21). The former pure states then are transformed
2 =

into a statistical mixture where only the corresponding probabilities |(1]| & |1)
|{0] & |0)|>~0.5 are conserved. For a more detailed analysis of mathematics, in
particular of the quantum mechanics, please refer to literature [10].

The Schrédinger equation in the density matrix formalism can be written as

i

p= Zpi(h/}z)(w + [9a) () = +[H, pl (3.23)

This expression describes already the time evolution of a statistical mixture. How-
ever, it still operates in a perfectly isolated environment. This means that the time
evolution of each pure state the density matrix consists of is given by the usual
Schriodinger equation (Eq. 3.12). But unfortunately, it is not possible to completely
decouple a system from the surrounding world. First of all, any quantum system is
in thermal equilibrium with the environment. Furthermore, depending on the ex-
perimental setup, the system is knowingly coupled to electric fields, magnetic fields,
measurement devices, etc. This fact manifests itself in so called decoherence process.

To describe this process of damping, a master equation is needed. We will use
here the Lindbladian form [12]:

) i

J

1
L;=L;pL} - 5(L}L]-p +pLiLy). (3.25)

L; and T'; are the Lindbladian operator and the characteristic rate corresponding
to the jth decoherence channel, respectively. Since the first term describes the time
evolution of the Schréodinger equation, the whole information about the damping is
concentrated in the other terms. The Lindblad equation is a first-order differential
equation with a sum on the right side of the equal sign. Thus, apart from the unper-
turbated evolution, the solution will have exponentially decaying factors depending

on the form of L;. In the next sections for the most important experiments (Rabi
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oscillations, relaxation and Ramsey fringes) the solution for the Lindblad equation
is calculated.
Let us consider now the three decoherence channels. Therefore, we define the

entries of the 2x2 density matrix. By using the hermiticity and the trace of 1, we

find
p= (). (3.26)
Plo 1—pn

The notation is in such a way that p;; = (1|p|1) and p19 = (1]p|0). As mentioned
above, there are a lot of ways for the excited state to loose its energy and so to relax
into the ground state. This effect is described by the characteristic time 77 = 1/T';.

The corresponding matrix is the annihilation operator o_

0 0
o_ = (1 0) . (3.27)

- - 2
L= fll 1o/ (3.28)
—Pi/2  pu

By setting L1 = o_ we get

Usually, also the creation operator o, = oL is taken into account. However, in our
regime it is negligible. The excited state of the qubit has a frequency which is higher
than 6 GHz. In contrast, the corresponding “thermal” frequency at a temperature of
30 mK is about fiperm = kT /h =~ 0.6 GHz. The probability to have an excitation

can be expressed by the Boltzmann factor:
(1]p[1) = e M/keT 5. 1075 (3.29)

The next very important decoherence channel is pure dephasing. The Lindblad

operator Ly equals the matrix az/\/§ and so

o (3.30)
—Plo 0

with the corresponding characteristic time Ty = 1/I'5. Here the star does not
symbolize a complex conjugated time but distinguishes from the time 75 defined in

following.



CHAPTER 3. TWO-LEVEL QUANTUM SYSTEMS 23

The complete Linbladian equation for our case then is

d ' -r -I
@ pil L L T 1pil 2p10 (3.31)
dt \ pty 1—p h —lopio Thipn
where . r 1 ]
M — — Y = o = 3.32
2= T Pt T; (3.32)

is the inverse dephasing time.

The operator L, is responsible for both decoherence processes decay and dephas-
ing, whereas L, affects only dephasing and does not describe any energy transfer
between states and environment. Therefore, it serves as the operator for the so
called pure dephasing channel. In the case of large 75, the dephasing time is limited
by T} so that Ty < 277. This relation is applied to the ideal atom. The decoherence
times T} and T3 can be extracted from two measurements [6] decay (Sec. 3.1.5) and
Ramsey experiment (Sec. 3.1.6).

Here I want to outline briefly the differences and similarities of terms used in
nuclear magnetic resonance (NMR) and quantum information. Theoretical meth-
ods of describing the behavior of a spin like Bloch vector representation or Rabi
oscillations have their roots in the field of NMR [54]. However, when considering
the same spin as a qubit it is common to use the definitions accepted in the field
of quantum computation [43|. I suppose that happened because NMR is dealing
with an ensemble of many spin 1/2-systems, whereas for quantum information the
behavior of each individual spin is important. Both theories use the decay time (or
longitudinal relaxation) 77 in the same way. In contrast, in NMR it is common to
define the dephasing time (or transverse relaxation time) 75 as the dephasing due
to unregulated perturbations or due to thermal equilibrium or magnetic field fluc-
tuations. Therefore, Ty concerns each spin 1/2-system independently and is called
homogeneous dephasing time. The inhomogeneous dephasing time T3 accounts for
rather constant energy shifts due to e.g. inhomogeneity of the applied magnetic field
or the coupling of a large number of spins resulting in the Zeemann-shift, dipole-
dipole interaction, etc. [15]. However, theoretically it is very difficult to take them
all into account. FEither way, the spins then are subjects of slightly different con-
ditions which results in dephasing of the complete ensemble given by the inverse
characteristic time 1/T5 = 1/T5 + 1/T3. Thus, the measured time in the Ramsey
experiment always yields 75. To cancel the inhomogeneous dephasing resulting in
the homogeneous time T3, other experimental method like the Spin-Echo [19] must

be employed. The pulse sequence in Spin-Echo is the same as in the Ramsey exper-
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iment but with an additional m-pulse between the two 7 /2-pulses. This corresponds
to a rotation of the Bloch vector in one direction and then its return after applying
the m-pulse.

In the field of quantum information, 7, denotes the total dephasing time for
one qubit only, depending on both 77 (decay rate) and Ty (pure dephasing) (Eq.
3.32). Since the qubit does not interact with other qubits of the same energy (when
detuned from two-level systems) the only pure dephasing channel is noise which is
mostly homogeneous. Since qubits are operated in a GHz regime it is reasonable to
distinguish between low frequency and high frequency noise. In fact, the first one can
be considered as an inhomogeneity because it does not change the conditions for the
qubit during one pulse sequence but affects rather many independent measurements.
Therefore, the low frequency noise component should be canceled out in a Spin-Echo
experiment. The pure dephasing time of the phase qubit used in this thesis (Sec.

4.1.1) increases by a factor of 3 when performing the Spin-Echo experiment [50].

3.1.4 Rabi oscillations

Rabi oscillations are coherent oscillations between two states of a quantum system
when they interact with a resonant or near-resonant field. First, they were described
in the area of NMR by Isidor Rabi in 1938 (Nobel Price in 1944). Rabi oscillations
appear for example when a spin 1/2-system is perturbated by an oscillating magnetic
field [54] or in quantum optics, when an atom is passing a cavity field [47]. We may
employ the basic results of that theory in describing the oscillations of our artificial
atom driven by a microwave field. To understand this rather complex effect in
this section the two standard approximations are introduced and the Lindbladian

equation (3.25) is solved.

Rotating wave approximation (RWA) and

Janes-Cummings-Hamiltonian

The description of Rabi oscillations in a quantized electro-magnetic field was made
by E. Jaynes and F. Cummings [25]. The main simplification is referred to as the
rotating wave approximation (RWA). We follow here the analysis of Zimmermann

[57]. The total Hamiltonian can be written as
Htot = Hq + HO + Hint7 (333)

with H, and Hy = hwy(a'a + 1/2) being the Hamiltonian of the qubit (Eq. 3.1)

and the microwave field, respectively. H;,; is the interaction term wich is usually
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expressed as

Hip =E - d. (3.34)
E is the oscillating electrical field of the microwave and d is the dipole operator of
the qubit. The field quantization allows us to write the electrical field in terms of

the creation and annihilation operator af and a
E x (a+adh). (3.35)

Assuming that the microwave field is polarized parallel to the z-axis E= E.e,. This
component then couples only to the part of the dipole of the qubit in z-direction so

that the dipole operator of the qubit can be simplified to
d, x 0, =0_+0,. (3.36)

Thus, the interaction Hamiltonian can be written as

Q)
Hipy = 70(0, + o) (a+ a) (3.37)

with the coupling strength Af)y. In the Heisenberg picture the time evolutions of

the operators a, a' and o, are

a(t) oc e”™0 af(t) oc e and (3.38)
o4 (t) oc et (3.39)

The core idea of the RWA is to neglect the fast oscillating terms o, a’ and o_a [55].
When considering long time scales, i.e. when the slow oscillating terms o_a' and o_a
show little variations, this approximation can be justified by two reasons. First of all,
they violate the conservation of energy since they implicit a simultaneous excitation
of the qubit and creation of a photon and a decay of the qubit and annihilation of
a photon, respectively. This would be important only on a very short time scale.
Secondly, the RWA is only valid if the frequency is in the vicinity of the resonance
of the atom. The fast oscillating terms then will very fast average to zero since
they rotate in opposite directions with angular frequencies of ~ 42wy to each other.
Therefore, they are called "counter rotating terms".

The resulting Hamiltonian is called Jaynes-Cummings-Hamiltonian (JCH). It

has the form
HJCH = Hq + HO + T(O',G + O'+CL) (340)
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Dressed states model

For further analysis we need a matrix representation for the JCH defined in Eq.
(3.40). In first instance, it is not obvious how to solve this problem since the JCH
works with the electro-magnetic field which has an infinite number of modes. How-
ever, the dressed states picture suggests a solution.

Let us assume, the microwave field has n photons. If the qubit is in its ground
state the initial state then is |0, n).

ol

1
HJCH|0,7”L> = (n + 5) th‘O,TL> + 5 \/ﬁ|1,n — 1> (341)

If on the other hand we consider the state |1,n — 1) then
1 R
Hycn|lin—1) = E+ n— 5 | hwoll,n —1) + —=/n|0,n) (3.42)

We see that the JCH combines only the states |0,n) and |1,n—1). Thus, the energy
is oscillating between the qubit and the microwave field with a frequency scaling with
Vv/n. Tt is then not necessary to consider how many photons the electro-magnetic
field has as long as the number is very high.

By shifting the lower energy to 0 and setting 0 = Qy+/n this Hamiltonian can

be expressed in the matrix notation as

_ (E—hw, hQ/2
Hjycn = ( B2 0 ) : (3.43)

By using this Hamiltonian, the angular Rabi frequency is defined as the difference

between the eigenenergies E. (Eq. 3.7)

E. - E_ E 2

The matrix in Eq. (3.43) looks very similar to the Hamiltonian considered at the

beginning of this chapter (Eq. 3.1). The difference is on one hand that the coupling
between the states is a real number. This has no physical meaning since it follows
from the assumption that the microwave field is polarized parallel to the x-axis.
On the other hand, the energy of the excited state is lowered by the energy of the
microwaves. This is exactly the idea of the RWA to express the time evolution of
the qubit with respect to the field.

By using the formalism described in Sec. (3.1.2) we can draw the time evolution
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of the qubit on the Bloch sphere. Since the coupling here is real the angle [ in
Eq. (3.18) is zero. If the qubit is in resonance with the microwave field £ = hwy,
a = 90° and so the Bloch vector is performing a full rotation around the x-axis from
the ground state to the excited state (Fig. 3.2). In the off-resonant limit the rotation
axis converges to the z-axis either with a going to zero (E < fiwy) or approximating
180° (E > hwp). The corresponding Rabi oscillations will then be faster with a
much lower amplitude (Fig. 3.3a). It is necessary to mention here that also when
the microwave source is turned off and Q = 0 Eq. (3.43) is still valid. This results
when considering the evolution of a two-level quantum system in the rotating frame

defined by the microwave frequency wq/2m [55].

Damping of Rabi oscillations

After analyzing the driven qubit without any losses it is also important to consider
decoherence effects. The coherent interaction between the qubit and the microwave
field is a crucial factor for applications on longer time scales. To simplify matters,

let the qubit be in resonance with the microwave. The Hamiltonian (Eq. 3.43) can

Hoo h< 0 W?) | .49

then be written as

Q/2 0

As discussed above, the eigenstates of H,.s are |+) and so a = 90° and [ = 0°.
Starting at the ground state, the corresponding rotation matrix U(t) (Eq. 3.16)

dictates the time evolution of the system

wien = (7 Sm%t). (3.46)

Q
cos 51&

The Bloch vector will always stay in the yz-plane. The density matrix for this

undamped rotation is

1

Prodec(t) = [V (ONU(1)] = 5 < (3.47)

1 —cosQt —isini
isinQt  14+cosOt)

Rabi oscillations without decoherence are shown in Fig. 3.3(a).
Let us now find a simple expression for a driven qubit which also involves damp-

ing. In order to be able to compare the resulting density matrix with the ideal one

(Eq. 3.47) we define
_ [ p(t) —ipa(t)
A= (zm(t) 1—po<t>>' (3:49)
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(a) (b)
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Figure 3.3: (a) Rabi oscillations without decoherence effects at different detunings are
shown, (b) decaying Rabi oscillations are displayed

with real functions py and p;. Using the master equation in the form of Eq. (3.31)
we find the differential equations for these two unknown functions that have to be

solved:
po = —T1po+ Qp1 and (3.49)

. Q
P1 = —on — ngl + E (350)

An equivalent expression is

(p:‘)) = <—F1 . ) (po) + ( 0 ) (3.51)
P1 —Q T/ \m Q/2
One can easily verify that the solution of a differential equation of the form
y=Ay+0b (3.52)
with a matrix A and a vector b is
y(t) = C - e — A7, (3.53)

where C is the starting condition. We will see in further equations that the homo-
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geneous part will decay with time. Thus, the result for the steady state is

(21:) B m (g?rl) (3.54)

The decay rates of the qubit and the Rabi frequencies are
' =Ty =~ 10MHz < Q ~ 27 - 30MHz (3.55)

allow us to simplify the expression of the stationary solution to

Pooco 0.499 0.5
~ ~ . 3.56
() ~ (o) = (% 459
This is in good agreement with the time independent part of the undamped oscilla-
tions in Eq. (3.47).
The procedure to find also the time dependent part of the solution is the same as

in Eq. (3.13) by using eigenstates and eigenvalues. Unfortunately, the calculations

get very complicated so that we have to make the approximation

r,—T
‘ L S (3.57)

Q

The eigenvalues of the matrix in Eq. (3.51) then are

Iy +T
Ay = — 1; 2 +4Q), (3.58)

and the eigenvectors simplify to

vy = (i) (3.59)

Putting everything together, the final solution is

(Po(t)> _ le_rlgrz cqs Qt  sin Q¢ O (0.5)‘ (3.60)
p1(t) 2 —sinQt  cos Ot 0

By comparing this result with the density matrix in Eq. (3.47) we find the starting
condition C'= (=1 0) and so

1 i/ [ —COS Ot —isinQt 05 0
p(t) = se . + , (3.61)
2 isinQt  cosQt 0 0.5
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where 7 is the characteristic time of the damping

-1
= —=4 — ) .62
T (2T1+2T2) (3.62)

Fig. 3.3(b) displays decaying Rabi oscillations simulated by the Lindbladian
equation. The exponentially falling curves with corresponding characteristic rates
of 1/100 ns (blue) and 1/200 ns (red and green).

In our experiments, the qubit is excited by a so called m-pulse. This means, that
the qubit is performing Rabi oscillations for half a period. Accordingly, a 7/2-pulse
and a 37 /2-pulse bring the Bloch vector of the qubit to the states |—;) and |+;),

respectively.

3.1.5 Decay

The measurement of the relaxation yields the time T7. After exciting the qubit by
a m-pulse and waiting for different times the probability is measured that the qubit

is still in the excited state. The Hamiltonian has the simple form

E 0
H = (o 0). (3.63)

The density matrix can be expressed as

0
p= "M (3.64)
0 1-pn

with the initial condition p;;(0) = 1. Thus, the master equation (3.31) shrinks to
the differential equation
pu = —Lipu, (3.65)

and so
pri(t) = e 1t (3.66)

The energy transfer between the states and the environment is described only by
the rate I';.

3.1.6 Ramsey fringes

Norman Ramsey was a PhD student of Isidor Rabi. Among other things, he explored

the core spin by using magnetic resonance techniques (Nobel Price in 1989). The
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Ramsey experiment for determination of the dephasing time 75 is named in honor
of him. Fig. 3.4(a) displays the pulse sequence. The bleary upper curve symbolizes
the excitation spectrum of the qubit in dependence on the external flux (Sec. 2.2.2).
After the first 7/2-pulse the Bloch vector reaches the state |—;). Then the qubit
evaluates freely performing some rotations around the z-axis with possible detuning
from the resonance. Before the sequence is terminated by the readout a second
7 /2-pulse is applied on the qubit.

In terms of the RWA and the rotating frame picture we can rephrase this problem
as follows: starting from the state |—;) the Bloch vector oscillates around the z-
axis with the detuning angular frequency § = E/h — wp. Then it is mapped back
on the state |—;) because this state will be rotated to |1) by the second pulse.
Indeed, also during the two 7/2-pulses the qubit is subject to decoherence. And
the considerations made here do not neglected that. The fact that the initial state
is not |0) and the final state is not |1) affects only the contrast of the oscillations.
Since the loss of information is in each experiment and for each 7/2-pulse the same
the damping of the oscillations is in fact independent of the two pulses.

The Hamiltonian for the free evolution of the Bloch vector in this case is

5 0
H=h (o 0) . (3.67)

By using the general expression of the 2x2 density matrix

p= (" ). (3.68)
Plo 1 —pn
we can express the time dependence by solving the master Eq. (3.31) as
Coe—rlt Cle—rgte—i5t
p(t) - (Cike—rgteicst 1— Coe—rlt ’ (3'69)

where Cy and C are independent starting parameters. By setting
1(1 —
p(0) = |=i){=il = 5 ( > (3.70)

we find Cy = 1/2 and C; = —i/2. Thus, the expectation value to measure the

system in the state |—;) or equivalently to find the system in the excited state after
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(a)
Figure 3.4: (a) Pulse sequence. Upper part:
; \ resonance curve of the qubit in dependence
L of the applied flux. Lower part: sequence of
Dot the Ramsey experiment (see text) (b) Ex-
ponentially decaying Ramsey fringes with
no detuning (blue curve) and a detuning of
50 MHz (red curve). (c¢) A surface plot of
the probability to measure the qubit in the

5.t excited state dependent on time and detun-
ing (red maximal, blue minimal)

VW\—

7 /2-pulse
readout
(b) (c)
1 T T T T T T T T T T T T
6= 0 MHz
6 =50 MHz
E 0 b
0 1 1 1 1 1 1 1 1 1 ////l’ - 1 1 1
0 40 30 120 160 200 0 40 80 120 160 200
t [ns] t [ns]
the whole pulse sequence is
e~ T2t 1
(—ilp(t)| =) = 5 cos ot + 3 (3.71)

This expression describes oscillations with the detuning frequency ¢/27 and the
damping rate I's. In Fig. 3.4(b), the blue curve with no detuning acts as the envelope
for the red oscillating curve. A surface plot with varying detuning and time between

the two 7 /2-pulses is displayed.
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3.2 Microscopic two-level systems (TLSs)

As described in the introduction, when considering decoherence in a superconduct-
ing qubit one has always to take also the parasitic two-level systems (TLS) in to
account. The origin of two-level systems in superconducting qubits is still not un-
derstood. It seems that they have the same nature as tunneling systems in solids
[20]. According to [37, 35, 2, 52| TLSs are microscopic defects which either are
located in the tunneling barrier of the Josephson Junction or at the surface of the
superconducting layer.

When going into the quantum limit, things get much easier. The TLSs, as the
name already tells, are two-level quantum systems and they completely obey the
quantum mechanical rules. The characteristic times of these natural defects show
rather random behavior [2, 24]. TIn our case, the two TLSs used in experiments
have much longer coherence times than the qubit. Furthermore, they fulfill the
relation Ty &~ 277. Thus, the decoherence is limited by the relaxation process. This
means, TLSs have a very low pure dephasing rate indicating a small coupling to the

environment. In contrast, TLSs may interact very strongly with the qubit [18, 44].

3.2.1 Interaction and Hamiltonian

As in the case of Rabi oscillations the interaction occurs due to electric fields. This

can be modeled again by the annihilation and creation operators. In the basis of
the qubit and TLS eigenstates {|1), [0)} @ {|e), |g9))} = {|1e), |1g), |0e), |0g)}

Hint = ge(0} @ 0 + 0% @ 07), (3.72)

where the superscript letters q and s correspond to qubit and TLS, respectively.
g. denotes a real coupling strength. When expressing each Hamiltonian of the two
systems in the rotating frame of the microwave field with the frequency wg/27 the
total Hamiltonian for the hybrid qubit-TLS system H,, reads

W(dw,+6w) 0 0 0
0 how, ge/2 0
Hyy = H,® 1o+ 1o ® Hy + Hypy = o 9/ . (3.73)
0 ge/2 hows O
0 0 0 0

where hdw, = E; — hwy and hdws = E. — hwy are defined as the energy differences

between the respective system and the microwave field.
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When turning on the microwave source the qubit will start to perform Rabi
oscillations at a frequency €2,/27. Mediated by the second excited state of the qubit
|2) the TLS performs also Rabi oscillations with the frequency /27 which is by a
factor of approximately 5 smaller [31]. This can be modeled as an effective complex
coupling strength —if{2, between the states |1g) and |1e). The Hamiltonian for the
driven qubit-TLS system then reads

h(dwy + dws) —ih€ds K, 0

109N ho /2  hSQ)
Hqs,mic = ! “a g / ¢ (374)

h<, ge/2  hows 0

0 K, 00

3.2.2 Beating between the qubit and TLS

To have a full picture of the dynamics between qubit and TLS we have to look
on the resulting Hamiltonian and find expressions for these damped oscillations. A
detailed analysis of the relaxation of the qubit in presence of TLSs was made by
Miiller et. al. |41]. Here, I want to extract two particular cases.

The first case considers the situation, when the excited qubit is brought into
resonance with one TLS. Since we have only one excitation in the system the state
|1e) remains unpopulated. By neglecting this state the effective Hamiltonian shrinks

to a 3x3 matrix:

how, g./2 0
Hyp= | g/2 how, 0] (3.75)
0 0 0

Note here the similarity of the upper 2x2 matrix in H.s¢ and the Hamiltonian for
a resonantly driven qubit H,..s (Eq. 3.45). Since one can always add a multiple of the
identity matrix to a Hamiltonian they have the same shape. In correspondence to
the Rabi oscillations, we introduce here the m-rotation where the states of the qubit
and of the TLS are swapping with each other. An equal entanglement between the
two systems is achieved by a 7 /2-rotation. On the other hand, the time evolution of
the initially excited qubit described by H.;¢ shows not only damped oscillations but
also the average value itself decreases to zero. The reason for the latter statement
is that here the ground state is the steady state and it does not participate in any
rotations.

Fig. 3.5(a) displays the simulated (Sec. 3.2.3) curve. All required parameters
were taken from Tab. (4.1, TLS is TLS2). The decay rates of the beating are given
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as follows:

1
Lo = 5 ('Y +T17) and
1 q S 1 *q *S 1 q S
Fose = 9 (I +T7) + 9 (I3 +1%°) = ) (Faw + T3 +173), (3.76)
where I'y, I'5 and I's correspond to the rates of relaxation, pure dephasing and
dephasing, respectively. The superscript letters q and s represent the qubit and the

TLS.

(a) (b)
1 T T T T T T T T T 1 T T T T T T T T T

%(efrwt + e~ Tosct) %(e—rgt + e—Fft)i%e—Fgﬁt

/[ geTet ) fleTi Ty

(Upessl1)
(1]pl1)

0 40 80 120 160 200
t [ns]

Figure 3.5: (a) Beating between the excited qubit and TLS at resonance.The damping
oscillations consist of two damping parts: the decay rate for the average value is denoted
as Iy, that for the oscillating part as I'pse. (b) Ramsey-type oscillations between qubit
and TLS (see text). The parameters for both simulated curves were extracted from Tab.
(4.1). The TLS corresponds to TLS2.

The calculated inverse decaying times for our qubit-TLS2 system are Iy, = 1/177
ns and [yee = 1/118 ns. It is remarkable that both times are higher than the
characteristic time 7 = 105 ns for the Rabi oscillations (Eq. 3.62).

The second case is slightly more difficult. During the measurements described
in Sec. (4.2 and 4.3) the qubit is entangled with the TLS by a 7/2-rotation and
then detuned for some time. To simplify matters, for the theoretical curve depicted
in Fig. 3.5(b) the initial as well as the projection state and the detuning were
set to |—;)% = (|0e) —i|1g))/v2 (Sec. 4.2.1) and 210 MHz, respectively. The
detuning is large enough so that we can neglect an influence of the TLS to the decay
time of the qubit and vice versa. Thus, the decrease of the average value of the
oscillations is proportional to the sum of the two corresponding exponential factors.

The expression for the damping factor of the oscillating part in the off-resonant
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regime depends only on the decay and dephasing times of the respective subsystems

1
roff = §(F‘{+Fi) + 54+ T35 =T% + T, (3.77)

In the case of the qubit-TLS2 hybrid system I'°// is about 1/89 ns.

osc

3.2.3 Simulation

To compare the experimental results with theoretical predictions and to extract im-
portant parameters with the fitting method, T wrote a simulation in the programming
language Matlab®, Version 7.7.0.471 (R2008b). My program takes three two-level
quantum systems into account. They are denoted as TLS1, qubit and TLS2. The
eigenstates of this tripartite hybrid system reads

basis = {[e), [9)} @ {[1),10)} @ {le), [9)}- (3.78)

The total Hamiltonian has the form

Hipp = (Ha @15015) + (1o @ Hy®@1s) + (1o @ 1o @ Hyg) + (Hing1 @ 12) + (12 ® Hipg 2).
(3.79)

The zero level is set to the microwave energy. The Hamiltonians of the respective
systems Hg, H,, Hg (TLS1, qubit, TLS2) equal the matrix of Eq. (3.43). When
the microwave source is on 2 is set to a corresponding value, if no field is present
2 = 0. The interaction Hamiltonians H;,;1 and Hjno (qubit-TLS1, qubit-TLS2)
are defined in Eq. (3.72). If desired, also the respective longitudinal couplings and
a direct interaction between the two TLSs can be included.

The simulation takes also account of decoherence effects via the Lindbladian
equation and the corresponding decoherence channels (Sec. 3.1.3). Although the
master equation is a first-order differential equation it is possible to calculate the
time evolution of the quantum states exactly. Therefore, a superoperator of the
dimensions dim(H;,;)? x dim(Hyy)? is constructed and the density matrix then can
be calculated via the usual procedure by using eigenbasis and eigenvalues of the
superoperator [11].

The simulation is in good agreement with the experimental results. To entangle
two TLSs (Sec. 4.3) the right pulse sequence was even first found theoretically before

the measurement was done.



Chapter 4
Experimental results

In the first part the chip and the experimental setup are presented and the quantum
systems are characterized. The main experiments showing coherent dynamics of the

qubit with one and two TLSs are described in the second and third part, respectively.

4.1 Experimental setup and characterization of the

quantum systems

4.1.1 Description of the UCSB chip

Josephson junction Shunting capacitor

Qubit

Readout de-SQUID
(gradiometric)

Flux bias lines Qubit loop

(gradiometric)

Figure 4.1: The chip from UCSB. The experiments in this thesis were performed with
that chip. The design of the bias lines and SQUID is gradiometric. Below the SQUID an
additional coil is placed which has the same parameters as the qubit loop to reduce the
net flux in the SQUID generated by the qubit.

The chip was provided to our group by Prof. John Martinis (UCSB). First results
with these chips are published in 2006 [50|. A photo of the chip is shown in Fig.

4.1. Note that the group of Martinis et al. attach great importance to gradiometric

37



CHAPTER 4. EXPERIMENTAL RESULTS 38

design. The flux bias lines and the dc-SQUID are arranged in such a way that the
integral of the flux over the SQUID loop is zero. The flux enters symmetrically into
the SQUID from two sides and its effect is annihilated. In contrast, the qubit is
placed closer to one bias line than to the other resulting in a non-zero flux bias. To
compensate the flux generated from the current in the qubit loop on the opposite side
of the SQUID an additional coil is designed, which has the same form and inductance
as the loop of the qubit. Thus, it is ensured that the SQUID magnetometer is always
at the best working point resulting in a readout of the qubit with high fidelity.
Aluminum serves as superconductor and AlO, as the isolation layer. The junc-
tion area was 1 pum?, which is, for example, a factor of ten smaller in comparison
to the chips fabricated at Hypres Inc. With a critical current density of 170 A /cm 2
I. equals 1.7 pA. The ratio of the loop inductance of 720 pH to the Josephson in-
ductance (Lo = 200 pH) results in the 8 parameter (Eq. 2.19) of 3.6. The self
capacitance of the JJ equals 50 fF. This would correspond to a plasma frequency
wp/2m of 51 GHz (Eq. 2.12). Therefore, the JJ is shunted by a large plate ca-
pacitor with an area of 60x60 um? and filled with silicon-nitride. The capacitance
was designed to be 800 fF so that w, is reduced by a factor of 4 to 12 GHz. The
decoherence times 77 and 75 were measured to be 110 and 90 ns, respectively. We
were experimenting with this qubit already for 4 years, the decoherence times have

not changed at all.

4.1.2 Experimental setup

On the left side we present the photo of the dilution unit
of the cryostat. The sample holder with the chip inside
is fixed at the bottom, where the mixing chamber (Sec.
2.2.1) produces a temperature of less than 30 mK. The
experimental setup is outlined in Fig. 4.2. The green
box symbolizes the chip (Sec. 4.1.1), which is cooled to a
temperature of approximately 30 mK. To manipulate the
qubit (blue) microwave pulses are required. Therefore,
the continuous wave generated by the microwave source
(uW) is prepared with the help of two mixers in series.
The DC pulses of the first port of the arbitrary waveform
generator (Tektronix, AWG7062B) applied on the mixers

switch the microwave on and off. Before the microwaves

reach the qubit they are attenuated by approximately 30
dB and they pass the on-chip DC break (orange), which
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filters out the low frequency noise.

mixers

uW T JATT] 1 __________

DC break Chip

=0

Iemt Isq Vtsq

Figure 4.2: Experimental setup. The green box symbolizes the chip at a temperature of
30 mK. The qubit is controlled by microwaves, which are pulsed by using two mixers in
series and the AWG, and by the extern flux bias, which is partially controlled by AWG.
The readout is performed by a dc-SQUID which is connected to a current source and a
voltmeter.

As discussed in Sec. 2.2.2, the potential of the qubit is controlled by applying
the external flux, which results from the current I.,;. The second port of the AWG
generates the fine tuning of the flux bias, which is responsible for the realization of
the pulse sequences discussed in the following experiments, as well as the readout
pulse. The flux bias signal is damped by approximately 10 dB to increase the
resolution of the pulse amplitude, and then goes through a bias tee (bias-T, red),
which combines the output signal of the AWG with the DC current ... To filter
out high frequency components, the chip has a series of low-pass LC-filters (light
blue). After the readout pulse, the state of the qubit is measured with the de-SQUID
(black) [32].
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4.1.3 Characterization of the quantum systems
Excitation spectrum

The first measurement after cooling down the chip records the excitation spectrum
fq(®eye) of the qubit (Eq. 2.11). To find the resonance frequency at a particular
extern flux bias ®.,; a long microwave pulse each with different frequencies is applied
on the qubit. The duration of this pulse has to be much longer (in our case 500
ns) than the decoherence time of the qubit (in our case ~100 ns) to ensure that
the qubit is in the stationary limit of Rabi oscillations. The pulse sequence and
the results are shown in Fig. 4.3(a) and (b). For the bias a current source and
an arbitrary waveform generator (AWG) are used (Sec. 4.1.2). The current source
generates a pulse to tilt the potential of the qubit to the working point, and the
AWG is responsible for changing the bias in correspondence to pulse sequences of
experiments.

Since the induced current in the qubit is proportional the externally applied flux

®.,¢, we can express the resonance frequency of the qubit f, (Eq. 2.11) as

o 4 (I)ezt_q)o ?
fq—fp\/l_ (TC) ) (4-1)

where f, is the plasma frequency of the qubit and ®. is the critical flux needed

to induce the critical current of the Josephson junction I.. ®, takes account for a
possible offset of the external flux. In particular, this factor plays an important role
when considering the resonance frequency of the qubit only in dependence on the
flux bias generated by the AWG. Then, the generated flux by the current source
is carried by ®j. In further analysis, we will use rather the qubit frequency f,
than the externally applied flux ®.,,. This is more convenient when comparing the
experimental results with theoretical predictions directly.

Here, we introduce a new quantity f,.s. In contrast to the qubit frequency f,, fres
represents the real resonance of the measurement. Usually, f, equals f,.;. However,
at some qubit frequencies f,; the spectrum splits in two parts resulting in f,.s # f;.
These avoided level crossings (Fig. 4.3(b)) give evidence of presence of parasitic
quantum systems, so called two-level-systems (TLS) (Sec. 3.2). The frequency
range of interest for this thesis extends over the resonance frequencies of two TLSs
shown in Fig. 4.3(c). Let us call the higher one with the resonance frequency of
7.944 GHz TLS1 and that with 7.734 GHz TLS2. The simulation (Fig. 4.3(d)) takes
them into account with the decoherence times specified in Tab. (4.1). The line width

of the spectrum depends on the microwave power (experiment) and so on the Rabi
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microwave
pulse
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frequency (simulation). In correspondence to the measurement the Rabi frequency
was determined to be 5 MHz. A measurement of beating (Sec. 3.2.2) between qubit
and TLSs (Fig. 4.5) showed an additional TLS (TLS3). Its coupling is too small for
the resolution of the resonance spectrum. Note the very high pure dephasing times
of the TLSs of several micro seconds. The TLSs satisfy the condition of an ideal
atom Ty ~ 277 (Eq. 3.32). Note also, that the horizontal axis in the plot in Fig.
4.3(c) is expressed in units of f,, and therefore can be compared directly with the

simulation.

Ty |ns| | T5 [ns] | T3 [ns] | fres [GHz] | g [MHy|
qubit | 110 | 100 | 183

TLS1 | 350 600 4200 7.944 34.8
TLS2 | 450 800 7200 7.734 22.5
TLS3 | ~ 100 | ~ 200 - 7.85 14

Table 4.1: Table with the decoherence times of the qubit and TLSs and the couplings of
the TLSs with the qubit

Decoherence times of the Qubit

Once the resonances are found one can perform measurements to characterize the
qubit. First, the Rabi oscillations (Sec. 3.1.4) are observed (Fig. 4.4(a)). The
damping rate was measured to be 100 ns. The result from Eq. (3.62) 7 = 105 ns is
in good agreement with the experiment. To extract the decay time 77 (Sec. 3.1.5),
the qubit is excited by m-pulse and then the readout is performed after waiting for
different times ¢ (Fig. 4.4(b)). The Ramsey experiment (Sec. 3.1.6), which consists
of varying waiting times ¢ with optional detuning between two 7/2-pulses, yields the
dephasing time T5 (Fig. 4.4(c)). The pure dephasing time T3 is calculated with Eq.
(3.32). To get reliable decoherence times they have to be measured at different flux
biases because they can be drastically reduced in the vicinity of a TLS [37]. The

decoherence times are collected in Tab. (4.1).

Decoherence times of TLSs

The two-level systems are characterized by performing the same experiments as for
the qubit characterization (Sec. 4.1.3). It is possible to excite them directly with
a microwave m-pulse. The coupling is mediated by the second excited state of the
qubit [31, 4]. Although we do not have a separate readout channel for TLSs, we

can determine their state by swapping it with a m-rotation on the qubit and then
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Figure 4.5: Beating. (a) Pulse sequence. The upper bleary line represents the resonance
spectrum. f, is the resonance frequency of the qubit. At different qubit biases (indicated
by two grey arrows) the m-pulse is applied (blue), after the beating time ¢ the readout
is performed (grey). (b) Beatings of the excited qubit with TLS1 (7.944 GHz), TLS2
(7.734 GHz) and TLS3 (7.85 GHz). By comparing the time evolution of the oscillations
at frequencies of (c¢) TLS1 and (d) TLS2 the coupling strengths can be determined quite
precisely. The simulated curves were renormalized to fit the experiment.
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performing the readout. The coupling strength g between the qubit and TLSs can
be determined quite precisely by observing the beating (Sec. 3.2.2) between the
two systems (Fig. 4.5). The characteristic times of the damping can be calculated
by the Eqgs. (3.76). The qubit is biased at different frequencies and then excited
by a m-pulse. After waiting for some time ¢ the probability of the qubit to be in
the excited state is measured. The decoherence times of the three TLSs in the
frequency range of interest are shown in Tab. (4.1). It was not possible to find out
the characteristic times for TLS3 since they are too short in respect to the necessary

time for a m-rotation.
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4.2 Experiments between qubit and one TLS

4.2.1 Quantum state tomography and preparation of an ar-

bitrary state

When considering experiments in the quantum limit, particularly the field of quan-
tum computation [43], it gets very important to characterize the state of the coherent
quantum system. This is done by finding the corresponding density matrix, which
in turn can be reconstructed by performing quantum state tomography [39]. A
measurement of a quantum system projects the state to its eigenstates. It yields
no information about coherence between these eigenstates which is described by the
off-diagonal entries of the density matrix (Sec. 3.1.3). The term quantum tomogra-
phy implies a controlled rotation of the quantum system so that effectively another
eigenbasis is created. By preparing the initial state many times and measuring the
projection to different eigenstates a full description of the initial state can be recal-
culated. Usually, the initial eigenbasis is referred to as the z-axis. The rotations of
the state are made in such way so that the state is projected on the x- or y-axis.
This results in the Bloch sphere and the Bloch vector discussed in Sec. (3.1.1).

The first quantum tomography in an experiment was realized in the field of
quantum optics by D’Arino et al. in 1995 [13|. Nowadays, it is a common technique.
In the field of superconducting qubits for example, since the year 2006 almost every
paper presenting some experiments shows also tomography results [50]. In that
field, qubits are controlled by microwaves. As discussed in the section about Rabi
oscillations (Sec. 3.1.4), the Bloch vector of the qubit starts to oscillate in presence
of a resonant microwave field passing from the ground state to the excited state.
The corresponding coupling strength is defined as a real number so that the x-axis
is the rotation axis. By performing this rotation the projection of the Bloch vector
to the y-axis can be realized. To have also the expectation value in respect to the x-
axis, the coupling strength between the ground and the excited state is made purely
imaginary. This can be arranged by a m/2-phase shift of the microwave signal,
e.g. by using an IQ-mixer [50|. By “reversing” the quantum tomography also the
preparation of an arbitrary state becomes possible.

The main idea of the quantum tomography to have control of the Bloch vector
can be also realized in a different way. We can take advantage of the parasitic, but
also coherent two-level systems (TLS) coupled to our qubit. The formalism for this
approach is straight forward. The two states of the qubit are denoted as {|1),|0)}
and that of the TLS as {|e), |¢g)}. Together, they span a 4-dimensional product space
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{1),]0)}®{le), |g)}. At the beginning of each experiment, the qubit is detuned from
the TLS and the microwave source is used to excite the qubit with a m-pulse. This
is the only function of the microwaves in the experiment presented here. The state
|le) has two excitations and therefore does not play a role. In contrast, due to
energy relaxation the probability to find the whole system in the ground state |0g)
is increasing with time. However, it does not affect the dynamics of the system.
|0g) it is an eigenstate which is not coupled to other states and will therefore not
participate in any rotations. Thus, we can concentrate only on the two states |1g)
and |Oe).

To be able to use the Bloch sphere and the equations discussed in Sec. (3.1.1),
we have to redefine the states. The states |1) and |0) are replaced by the states |1g)
and |0e), respectively. The corresponding states on the x- and y-axis then can be

rewritten as .
_10¢) = [1g) _[0¢) % il1g)

V2 V2o

where the superscript letters ¢s denote the states of hybrid system qubit-TLS.

[£)% SR A (4.2)

Note here two remarks. First, the ground state is not represented on the Bloch
sphere. The relaxation of the system can be modeled by a shortening of the Bloch
vector to the origin of the Bloch sphere with time. Thus, it affects only the contrast
of the measurement. Secondly, here it is not necessary that the state |1g) is energet-
ically higher than the state |0e), it depends on the relative position of the qubit in
respect to the TLS. By taking this into account, we can transfer the considerations
of rotation described in Sec. (3.1.2) to this case. Thus, as it is also the case of Rabi
oscillations, the x-axis stays the rotation axis at resonance.

It is important to point out the main differences between the manipulation of
the Bloch vector by microwaves and by coherent interaction with a TLS. First, the
preparation of an arbitrary state by using a TLS can be only done, if either the
TLS or the qubit are excited (in our case it is the qubit). Second, as mentioned
above, the rotation around the y-axis in the case where microwaves are used is
achieved by a phase shift of 7/2 of the microwave signal. An equivalent but less
obvious explanation therefor would be that the Bloch vector at some time point
suddenly acquires an additional phase of 7/2 and the x-axis persists the rotation
axis. That is, indeed, the idea when considering a rotation with a TLS. That
happens when detuning the qubit from the TLS by the angular frequency ¢ for the
time 7/29. Note that ¢ has to exceed the coupling strength between qubit and TLS
by at least a factor of 15 [1]. Third, we have to compare the main features of Rabi

oscillations (Sec. 3.1.4) and beating (Sec. 3.2.2). A driven qubit will never be in
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an eigenstate. Starting with the state |0,n), where n denotes the photon number of
the microwave field, it will oscillate between |0,n) and |1,n — 1). When the qubit
decays, it will continue to interact with the microwave field rotating from [0, — 1)
to |1,n — 2) etc. In the limit of long times the qubit will pass into a steady state.
When considering the hybrid system qubit-TLS the energy oscillates between the
states |1g) and |0e). Here, the process ends in the eigenstate |0g). Fortunately,
our TLSs have much longer decoherence times than the qubit, so that the damping
rate for these oscillations in resonance is even slightly lower than that for Rabi
oscillations. The last point concerns the quantum tomography itself. By performing
Rabi oscillations either around the x-axis or y-axis the population and phase of the
state |1) in respect to the state |0) can be determined. In contrast, if the state of
the qubit is manipulated with the TLS, only the relation of the state |1g) in respect

to the state |Oe) is reproduced. It yields no information between the states |1g) and
109)-

4.2.2 Generation of |1)? states with two rotations

Let us now prove the ability to prepare arbitrary states of the qubit and then perform
a tomography. The most interesting area on the Bloch sphere is the equatorial plane.
There are all the states defined in Eq. (4.2) which will yield maximal oscillations
(|£:)9%) or no oscillations at all (|£)?) when the qubit is in resonance with the TLS.

The desired time evolution of the Bloch vector is shown in Fig. 4.6(a),(b). The
pulse sequence to realize this controlled rotations is displayed in Fig. 4.6(c). First,
the qubit is placed to the microwave frequency of 7.569 GHz. This corresponds to
a detuning of 165 MHz from TLS2. Then it is excited with a w-pulse which has a
duration of 20 ns (blue) and is tuned into resonance with TLS2. There it is kept
for 11 ns which results in a 7/2-rotation (green). Afterwards, the qubit is detuned
again by 165 MHz for the time t; (orange) and brought back to resonance. After
the beating time t5 (purple) the readout is performed (grey).

In the following these rotations are analyzed analytically. After the m-pulse
generated by the microwave field the hybrid system qubit-TLS2 is in the state |1g)
which is lying on top of the Bloch sphere (blue thin arrow) (Fig. 4.6). Thus, the

starting condition is
1
o) = 119) = () (43)

The qubit then is brought into resonance with the TLS and the Bloch vector starts
to oscillate around the axis defined by the eigenstates |+)?° (Fig. 4.6(a)). The
direction of rotation is determined by the fact that the energy of |+)% is higher
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than that of |—)?. By using the right hand rule (Sec. 3.1.2) the Bloch vector
rotates into direction of the state |+;)?°. The duration of this rotation is fixed so
that this step is finished when the Bloch vector reaches the state |4;)?° (green thin
arrow) which corresponds to a w/2-rotation. The unitary matrix which describes
this entanglement can be found by using Eq. (3.16), where o = 90° and § = 0°
(Eq. 3.10) correspond to the angles of the eigenstate |[4)?°. The angle by which the

Bloch vector is rotated is /2, and so

1 1 —
o= 5 (_i 1 ) . (4.4)

Since this experiment was made with TLS2 and the coupling strength is go/h = 23
MHz the time for rotation is fixed to 11 ns. Afterwards the qubit is brought back
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Figure 4.7: Measurement of the pulse sequence shown in Fig. 4.6. The Bloch vector
oscillates on the equatorial plane around the z-axis for the time t;. Then it rotates around
the x-axis for the time t5. The disappearance of oscillations at the times ¢; of 4.5 ns, 7.5
ns etc. determine the Bloch vector to point to the states |[4+)%%, |—)9°, etc.

to the initial position. Here it is parked for the time t;. The detuning between the
qubit and TLS2 equals §/27 = 165 MHz. The Hamiltonian for this configuration is

—ho 2
92/2 0
The energy is negative indicating that the resonance frequency of the qubit is below
that of TLS2. Therefore, the Bloch vector starts to rotate nearly around the z-axis
clockwise. We find the oscillating frequency w; /27 (Eq. 3.15) and the angles o and
B3 (Eq. 3.10) describing the location of the eigenstates on the Bloch sphere to be
w1

1
— ~ 167 MHz ~ — 4.
o 67 MHz B s and (4.6)

a8, 3=0. (4.7)

The unitary time evolution operator (Eq. 3.16) then can be written as

e . - w
ezt —1asin 2y
Ui(t) =~ o 2 : (4.8)
; 1 W1 —islty
—10 SIn 7151 e 2

For an ideal rotation around the z-axis « has to be zero. Unfortunately, this
is not the case here. The reason is that the qubit is not detuned far enough. The

ratio 9/ go is approximately 7. In the paper of Hofheinz et al. [21] it is proposed
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to detune 25 times the coupling which corresponds to an « of 2°. In our case the
detuning would be equal to 575 MHz. The problem with such a high detuning is that
the rotations around the z-axis are too fast. The time for one cycle would be less
than 2 ns. To smooth the shape of the pulses and to remove parasitic oscillations,
the lowpass filter at the output port of our AWG (arbitrary waveform generator)
was set to 200 MHz. This results in rising and falling times each of around 1 ns,
which corresponds already to a half of rotation.

As explained above, the period of the oscillations is 6 ns. Thus, starting with
|[+:)%, the state of the system will first pass |—)?° after approximately 1.5 ns. After
4.5 ns it will reach the state |+)% and after 7.5 ns it will come again to |—)% (Fig.
4.6(a)).

In the next step, the qubit is brought into resonance with TLS2 for the time ts.

The corresponding Hamiltonian and the time evolution operator («a = 90°, 5 = 0°)

Hy = ( 0 92/2> (4.9)
g2/2 0

“af,  —isin <2t
Us(ty) = ( coRta TR 2) , (4.10)

—isin Pty cos Py

then are
and

where wy = go/h. Afterwards, the pulse sequence is terminated by the readout. The

probability to measure the qubit in the excited state after that sequence is given by

P(ty, t2) = [(WolUs(t2) Uy (t1) Uo|too)|*. (4.11)

If we assume « to be zero we can find an analytical expression in the form

Pozo(t1, t2) = % (1 — cos(wity) cos (a)gtg + 3;)) : (4.12)

The measurement is shown in Fig. 4.7 versus times ¢; and ¢5. Due to the duration
of the rising and falling times of the pulses of 1 ns, ¢; and ¢, start with 2 ns. The
oscillations at a fixed time t; visualize the beating between the states |1g) and |0e)
indicating a rotation of the Bloch vector around the x-axis. Thus, maximal beating
arises at t; of 0 ns (|4;)?%, not shown), 3 ns (|—;)?°), 6 ns (|+;)?) etc. In contrast,
the oscillations vanish when the system is in its eigenstates, so at 1.5 ns (|—)%, not
shown), 4.5 ns (|4)%), 7.5 ns (|—)%) etc.

The theoretical results one can see in Fig. 4.8. The surface plot with a qubit
detuned by 575 MHz from TLS2 as a comparison is shown in Fig. 4.8(a). The
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(a) 6/2m =575 MHz (b) 6/2m = 165 MHz
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(c) /2w = 165 MHz, qubit missed the resonance by +4 MHz
14
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Figure 4.8: Simulation of the pulse sequence shown in Fig. 4.6. Qubit detuned by 575
MHz (a), 165 MHz (b) from TLS2 while exciting and while the rotations during ¢;. (c)
Qubit detuned by 165 MHz for the time ¢; and by +4MHz for the time ¢4
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real situation with ¢/2r = 165 MHz is displayed in Fig. 4.8(b).

recognize that the chess board structure turns into a diamond shape. However, the

Here, one can

experimental results show rather a chess board than diamonds. An obvious reason
for this disagreement is an error in calibration of the experiment. The variation of
the corresponding times for the m-pulse or the 7/2-rotation in the theory does not
improve the similarity between simulation and experiment. Since the AWG has a
time resolution of 0.2 ns large errors on the time axis are rather implausibly. On
the other hand, the uncertainty in frequency of the qubit is quite large. The pulse
for tuning and detuning the qubit generated by the AWG has an amplitude of 50
mV with a resolution of 2 mV. This results in a step size of 7 MHz. Indeed, when
considering the qubit biased 4 MHz above TLS2 during the time ¢, the chess board
shape is reproduced (Fig. 4.8(c)).
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Figure 4.9: Decay of the |£)9° states. Cut from the surface plot in Fig. 4.8 at (a) t; = 4.6
ns (|4)%) and (b) t; = 7.6 ns (|—)%)

The behaviour of the decay of the state |[4)?° is shown in Fig. 4.9(a). One can see
its exponential dependence on time. However, the curve still possesses oscillations.
The theory is in good agreement with the experiment confirming the idea described
above. In contrast, the fit of the state |—)%° (Fig. 4.9(a)) is shifted to the left by 7 ns.
I have not found any explanation for a so large offset. Even considering other fitting
parameters like longitudinal coupling between the TLS and qubit do not improve
the fit. Taking into account TLS3 (Sec. 4.1.3) with a resonance frequency of 116
MHz above TLS2 also does not make the agreement better.
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Here, I want to resume the idea of tomography. At the time t; = 4.5 ns Fig.
4.7 does not show significant oscillations indicating that the Bloch vector is in an
eigenstate of the qubit-TLS2 system in resonance. In contrast, at the time t; = 6
ns, which corresponds to a phase difference of 7/2, maximal oscillations appear.
For times ¢y close to zero the probability to find the qubit in the excited states
rather goes down than up. This is the result of the tomography of the state |4)%°.
Another rather simple example is the state |0e) + e *|1g) with ¢ = 135°. On the
Bloch sphere this state is located on the equatorial plane between the states |—)9°
and |—;)?. Starting the time evolution of the Bloch vector from |+;)?, this state
is created after t; = 2.25 ns, and thus the 7 /2-rotation is terminated after 3.75 ns.
The two oscillating curves show the same behavior. In principle, one can extend

this type of tomography to the whole Bloch sphere.

4.2.3 Generation of |+)? states with one rotation

As we have discussed in the previous section, we have prepared states between qubit
and TLS2 with two rotations of the Bloch vector which are close to eigenstates of
the hybrid system qubit-TLS2 in resonance. When observing the decay of these
states (Fig. 4.9) the Bloch vector shows small oscillations. We found that a possible
reason for that is a not precise calibration. A question arises whether it is possible to
prepare these states more accurately with an easier approach and eventually faster.

The answer is yes. We can do it by rotating the Bloch vector only once from the
state |1g) directly to the desired states |+)?, as shown in Fig. 4.10. The evolution
of the Bloch vector on the Bloch sphere and the corresponding pulse sequence is
displayed in Fig. 4.10 (a) and (b).

First, like in the experiment with two rotations, we excite the qubit with a 7-
pulse detuned from TLS2 by ¢/2m = 165 MHz (blue). To prove the |+)%-creation,
again the beating is observed by tuning the qubit into resonance with TLS2 for a
varying time ¢ (purple). The second degree of freedom was chosen to be the qubit-
TLS2 detuning because it is much easier to calculate the pulse time than to calibrate
the flux bias of the qubit to a particular energy. Fig. 4.10(c) shows the dependence
of the angle a between the rotation axis and the z-axis (Eq. 3.10) and the rotation
angular frequency w (Eq. 3.15). The energy of interest which corresponds to an « of
45° (135°) is detuned from the resonance with TLS2 by —go/h (4+g2/h). The time
for a half rotation is then reduced by a factor V2 to 15.6 ns.

Fig. 4.11(a) presents the simulation for the experiment in an ideal situation.
When the qubit is parked far below TLS2 for that fixed rotation « is very small.

That means on one hand that the rotating axis is close to the z-axis and on the other
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Figure 4.10: (a) Rotation on the Bloch
sphere. The desired rotation axis I (II)
enclose an angle o with the z-axis of 45°
(135°). The Bloch vector (blue) then fol-
lows one of the green arrows to the state
|—)?° (]4+)?). (b) The pulse sequence for
the experiment. The axis I (II) is gener-
ated when the qubit-TLS2 detuning equals
—g2/h (+9g2/h). (c) The curves for a (blue)
and w (red) in dependence on g/hd.

the |—)% side of the Bloch sphere

than on the |4+)? side. While moving towards resonance, a increases. While « is

less than 45° the probability to measure the qubit in the excited state at beating

times ¢ close to zero is rather high. The reason is that the Bloch vector evaluates

only in the upper half of the Bloch sphere. When « equals 45° the qubit is below

TLS2 with a detuning of exactly g/h. Thus, when the qubit is tuned into resonance
with TLS2 the Bloch vector points to the state |—)?° and the oscillations in time ¢
vanish. In the range of 45° < o < 135° after the first rotation the Bloch vector points

below the equatorial plane. This results in a low probability that the qubit is in the

excited state for very small ¢. Thus, the oscillations are shifted by 7 in comparison



Figure 4.11: Theory and measure-
ments. (a) Surface plot of an ideal
situation described in Fig. 4.10. (b)
Measurement (c¢) Theoretical plot with
the following modifications: at 7.85
GHz TLS3 has its resonance frequency,
qubit-TLS2 detuning during m-pulse
equals 165 MHz, when the beating is
observed the qubit is still detuned by
-4 MHz from TLS2.
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to the previous case. When « reaches 135° the Bloch vector will be rotated to |4)?°
which is again an eigenstate of the qubit-TLS2 system in resonance. This is the case
when the qubit is detuned by +g¢s/h. The evolution of the Bloch vector at higher
detunings can be treated in the same way as detuning towards lower energy, but
here the Bloch vector will rather oscillate on the side of positive x-axis than on the
side of negative x-axis.

In Fig. 4.11(a) one can also notice small oscillations depending on detuning
frequency f,. Since the oscillation frequency changes but the rotation time is fixed,
the Bloch vector will point to different states when the qubit is tuned in resonance
with TLS2. If for example the Bloch vector is on the |+;)?° side of the Bloch sphere,
first the probability of the state |1g) will decrease when the qubit is moved to the
resonance. In contrast, the Bloch vector will first move up if when during the change
of the qubit bias it points to states behind the xz-plane.

In Fig. 4.11(b) and (c) one can see the measurement as well as the corresponding
theoretical plot. The experiment differs from the “ideal situation” in the following
points. First, the interruption of the oscillations at 7.85 GHz occurs due to the
presence of TLS3 (Sec. 4.1.3) which has its resonance frequency about 116 MHz
above TLS2. Second, the oscillations depending on detuning frequency above the
resonance are faster than these below the resonance. The reason for that, as the
simulation shows, is that the qubit is placed too close to TLS2 during the m-pulse.
Third, as discussed in the experiment with two rotations, the resolution in f, is
approximately 7 MHz. The discrepancy between the experiment and simulation is
improved when assuming that even at the resonance condition the qubit is detuned
from TLS2 by —4 MHz.

By changing some experimental parameters we managed to prepare the states
|£)?° and to measure their exponential decay (Fig. 4.12). Both states show same
decay characteristic times of approximately 100 ns. Nevertheless, the relaxation of
the state |[4+)?° possesses still oscillations which can be explained with the presence
of TLS3. To measure that exponential decay we reduced the step in f, to 2 MHz by
adding attenuators at the AWG port. Furthermore, during the m-pulse, the qubit
was detuned by 400 MHz from TLS2. To correct the calibration errors we variated
each quantity around its calculated values. Thus, the optimal time for rotation, and

qubit bias during the rotation and at resonance with TLS2 could be found.
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Figure 4.12: Decay of the states |[+)?° (a) and |—)?° (b). Both measurements show the
same characteristic time of 100 ns. The decay of the state [4+)?° possesses still small
oscillations due to presence of TLS3.
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4.3 Experiments between qubit and two TLSs

4.3.1 Entanglement of quantum systems

Entanglement between two and more qubits is a crucial feature in quantum algo-
rithms. The development of a computer based on quantum manipulation requires
the proof of entanglement between qubits. Therefore, one has to measure the density
matrix of the whole system. As discussed in Sec. (3.1.3), the diagonal elements of
the density matrix give the probabilities about the states, whereas the off-diagonal
elements yield the information about coherence. The latter necessitates a simulta-
neous readout of the quantum subsystems, i.e. the probabilities of all qubits have
to be measured independently after each experiment. In this way, one can verify
entanglement by performing tomography on the qubits before the readout [49] or
by showing the violation of Bell’s inequality |9, 1]. In our experiment, a tripartite
system is composed of the subsystems phase qubit and two TLSs. The qubit is
the only subsystem whose state can be determined by measurements. Thus, it is
impossible to readout the states of the qubit and TLSs simultaneously. The TLSs
can be measured by performing a m-rotation with the qubit (Sec. 3.2.2) followed by
the readout. This results, however, in the loss of information of the former state of
the qubit.

4.3.2 Coherent dynamics between two TLSs

Another way to reveal the evidence of entanglement is to observe coherent inter-
action between the quantum systems [1]. For example, the experiment where the
states |£)9® are prepared with two rotations (Sec. 4.2.2) illustrates such a mea-
surement. The excited qubit performs a 7/2-rotation with the TLS resulting in an
entanglement. Afterwards, the qubit is detuned for some time and then brought
again in resonance with the TLS. We observe constructive and destructive inter-
ferences. When the phase between the qubit and the TLS is zero or 7 (|£)%) the
experiment does not show oscillations. In contrast, a phase of +7/2 (|£;)?) pos-
sesses maximal beating. In the following, I describe an experiment which proves
coherent quantum dynamics between two TLSs.

The pulse sequence for the experiment is demonstrated in Fig. (4.13). As in the
previous experiments between qubit and one TLS (Sec. 4.2), it starts by a m-pulse on
the qubit at 7.569 GHz with a duration of 20 ns (blue). Afterwards, it is brought into
resonance with TLS2 (7.734 MHz) for 11 ns which results in a 7/2-rotation (green).

Then, the qubit is biased at different frequencies and hold there for a varying time
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t (purple). Before the pulse sequence terminates with the readout pulse (grey), a

second 7/2-rotation is performed between the qubit and TLS2 (green).

—

i_T \ 210 MHz
I T~

t l % m-pulse

7 /2-rotation

for t

7 /2-rotation

> readout

Figure 4.13: Pulse sequence. After entangling the excited qubit with TLS2 it is detuned
for the time ¢. Before the readout it performs a second 7/2-rotation with TLS2. Thus, it
imitates the Ramsey experiment.

The idea for this measurement is somehow similar to the Ramsey experiment
(Sec. 3.1.6), where the qubit, starting from the ground state, is rotated by a mi-
crowave 7/2-pulse resulting in the state |—;) = (|0) —i|1))/v/2 (Eq. 3.4) and after
free evolution is followed by an additional 7/2-pulse and readout. In contrast, in
our experiment the excited qubit performs a m/2-rotation due to the interaction
with TLS2 which results in the state |+;)% = (|0e) + i|1g))/v/2 (Eq. 4.2). The
same comparison can be also applied when considering the second 7/2-pulse and
the corresponding rotation. The difference between the Ramsey fringes and the ex-
periment presented here is reflected during the “free” evolution of the qubit. While
in the Ramsey experiment the microwave is turned off and the qubit can really pre-
cise around its z-axis, the coupling between the qubit and a TLS is always present.
Therefore, if the qubit is in resonance with TLS2 we measure oscillations, and only
in the off-resonant limit the fringes are reproduced. The measurement and the sim-
ulation of this Ramsey-like experiment are presented on Fig. 4.14(a). The Fourier
Transform of the time evolution is displayed on Fig. 4.14(b) (experiment) and (c)
(simulation). The hyperbola seen on the lowest graphs is described by the relation
(3.15, with E = hd) w = /02 + (ga/h)2, where g, is the coupling strength between
qubit and TLS2. The red round areas on the surface are artifacts. Due to a step
in f, of 3 MHz and in f of 5 MHz (maximal measured time between the two 7/2-

rotations amounts to 200 ns) the resolution is not high enough for the smoothing
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procedure in Matlab®. Nevertheless, the theory reproduces the experimental data
with good accuracy.

To have a tripartite system we have to establish interaction with TLS1. There-
fore, between the two 7/2-rotations the qubit is tuned to frequencies around TLS1
which has its resonance 210 MHz above TLS2. Without any TLSs one would expect
to see just oscillations with approximately the detuning frequency as it is shown in
Fig. 3.5(b). The analysis of the measurement would be the same as that of the
generation of the states |+)? with two rotations (Sec. 4.2.2), but with variable
detuning 0 and a fixed time ¢, of 11 ns.

However, due to presence of two TLSs, the time evolution of our tripartite system
is more complex. The basis of the total system consists of the 8 states constructed
from the eigenstates of the three subsystems. The notation is {|e), |g)} ®{[1),]0)} ®
{le),|g)}, where the first and the third bracket corresponds to TLS1 and TLS2,
respectively. Since the total system has only one excitation, we can neglect higher
excited states. The ground state |gOg) is also disregarded since it does not interact
with other states. Therefore, we can restrict ourselves to the 3-dimensional subspace

{le0g), |glg),|g0e)} and the corresponding Hamiltonian

EeOg g1/2 0
H = 91/2 Eglg 92/2 5 (413)
O 92/2 EgOe

where ¢g; and ¢, define the qubit-TLS1 and qubit-TLS2 coupling constants, respec-
tively. We set the energy level for TLS2 Fy. to zero and denote the energy of TLS1
Eeoy as hRA. Furthermore, we neglect the influence of one TLS when the qubit is
near resonance with the other. We take also use of the states defined in Eq. (4.2)
between qubit and TLS2. We start the analysis with the initial state [¢)) after the

excitation of the qubit

o) =|1]. (4.14)
0

The unitary matrix for the 7/2-rotation between qubit and TLS2 can be written as

(Eq. 3.16)
1 1 —
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Figure 4.14: Coherent dynamics between qubit and TLS2. (a) Time domain measurement
(upper plot) and simulation (lower plot). Near resonance the beating between qubit and
TLS2 is observed. In the off-resonant limit fringes as in the Ramsey experiment can be
seen. The Fourier Transformation of both measurement (b) and simulation (c) is shown.
The red round areas are artifacts.
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Thus, by taking into account TLS1, the total matrix has the form

et ()

U= o0 , 416
: 0 U7r/2 ( )

where ty = 11 ns is the time needed for the rotation. The upper TLS acquires the
phase Atgy, and

1
Ui =— | 1 | ox|g)|+:)?. 4.17
ol o) Al |9)[+4) (4.17)
—1
When the qubit is near resonance with TLS1, TLS2 evaluates freely, and we can

restrict ourselves to the subspace {|e0g), |glg)}. The time evolution operator Urrgs
(Eq. 3.16) is

cos &t + isin &t cos —7sin &t
Urps1 = ( 2 > 2 , (4.18)

—isin %t CoS %t — ¢sin %t CcoS (v

where v1 = ¢g1/h and tana = —g1/(Ejy — hA) (Eq. 3.10.) The time operator for

the tripartite system then reads

e—iAt LU
U, = g (4.19)

0 0 1

The last rotation before the readout of the qubit equals the first rotation U,. That
means, the maximal probability to measure the qubit in the excited state is provided
by the state |g)|—;)?.

By a small transformation and by using Eq. (4.17) we can significantly simplify

the expression to find the qubit in the excited state after the pulse sequence:

P(t, ) = [(¢o|UoUrUslvo)[* = [{Ugtho|Ur |Utbo) | = | (=il{(glU1lg)|+:) [ (4.20)

The expression (g|Ui|g) shrinks the 3x3 matrix U; to a 2x2 matrix U, s by canceling

the entries corresponding to the state |eOg) (the upper row and the left column).

—1At U1 s i U1
e cos &t —isin &t cosa) 0
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Figure 4.15: Coherent dynamics between qubit, TLS1 and TLS2. (a) At frequencies of
TLS1 an interference pattern is observed. The upper plot shows the measurement and the
lower one the simulation. The Fourier Transformation is displayed in (b) (experiment)
and (c) (theory). At the resonance condition, the oscillations consist of the frequencies 35
MHz, 210 + 18 MHz.
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Figure 4.16: (a) The cut from the surface plots displayed in Fig. 4.15(a) at the resonance
condition is shown. (b) The curves of the probabilities to find each subsystem in its excited
state are plotted. The corresponding envelopes which possess exponential behavior are also
shown.

and so

2

‘ 2
= ‘1 — eiAt <cos %t 44 sin %t CoS a)

P(t,a) =

(4.22)

% (i 1) Uess (i)

The experimental results and the simulation are shown in Fig. 4.15(a).

One
can see fast oscillations which appear and disappear with a smaller frequency. The
Fourier Transformation for the experimental and theoretical time evolution is shown
in Fig. 4.15(b) and (c). At the resonance condition with TLS1, it shows a peak at
a frequency of 35 MHz. That is due to coupling between qubit and TLS1. Near the
resonance with TLS1 an avoided level crossing is easily recognized. The splitting
equals 35 MHz.

To compare the experimental and theoretical agreement directly we look at the

oscillations at the resonance condition with TLS1 (Eq. 4.22). The analytical ex-
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pression to find the qubit in the excited state is

2

Pres (t, o= g) = ‘1 — e cos —Uzlt
1/3 1 (%1 U1
4(2+200sv1t cos[( 5 t Cos + 5 t

The cut from the measurement at 7.944 GHz and the corresponding simulated curve
are shown in the upper plot of Fig. 4.16. The amplitude and the offset of the theo-
retical curve were fitted to the experimental data. One can see the same behavior of
the measurement and theory. The equation (4.23) proves that the oscillations consist
of three angular frequencies: v; and A £ v;/2. At times where the fast oscillations
vanish the qubit has transferred all its energy to TLS1, the following 7/2-rotation
with TLS2 yields the probability of 1/4 to measure the qubit in the excited state.
On the other hand, maximal oscillations are observed when the qubit is tuned back
to TLS2 with maximal excitation. The simulated excitations for TLS1 (blue) and
TLS2 (green) are displayed in the lower plot of Fig. 4.16. The qubit (red) and TLS2
are in antiphase with each other, as expected. The fast oscillations between qubit
and TLS2 disappear when TLS1 is maximally excited. The amplitude of the |e0g)
state (TLS1) shows also fast small oscillations. The Fourier Transformation of this
curve (not shown) proves the beating frequency of g;/h and contains additional two
peaks at frequencies of A/27 £ g, /2h.

It is also interesting to verify the calculations of Miiller et al. [41]. In his paper,
he considers the decay of the oscillations between the qubit and TLSs. We discussed
in Sec. (3.2.2) the two cases, where the qubit is in resonance and off-resonance with
one TLS. Here, I would like to combine the two limits. The qubit is on one hand
in resonance with TLS1, on the other hand it is detuned from TLS2. The values
for the characteristic times are summarized in Tab. 4.1 and the envelopes for the
oscillations are plotted in the lower part of Fig. 4.16. The rates for decoherence of
the qubit-TLS1 system in resonance are denoted as T'%! = (T'Y 4 T'5') /2 (averaged
decay rates) and T'%! = (T'94+1'5") /2 (averaged dephasing rates). They are calculated
to be

I'%! = 1/167 ns and TP = 1/171 ns. (4.24)

Thus, the inverse decay characteristic time for the oscillations equals

1
ri = 5Tw + T8 = 1/113 ns. (4.25)
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When taking also the off-resonant TLS2 into account, the decay of the average value
of the oscillations of the qubit will consist of the three exponential terms with I'¢5!

av

I'%! and I'; of TLS2. The damping rate of these oscillations I'%// is calculated to be

osc osc

roff = T9 4 T2 = 1/141 ns. (4.26)

By adding these terms with corresponding coefficients, the envelope for the qubit to

be in the excited state can be expressed as

~ 1 left/450 + l(e*t/lm + eft/113> + eft/141 (4.27)
2\ 2 4
The time ¢ is measured in ns. The exponentially decaying curves are plotted in the

lower part of Fig. 4.16. They fit the relaxation of the tripartite system very well.

4.3.3 Proof of TLS entanglement by analyzing the beating

frequencies

In the following, we present an experiment that proves the entanglement between
TLS1 and TLS2. The measurement reveals the beating frequencies between entan-
gled and independently excited TLSs. Due to the complexity of the pulse sequences
and the resulting dynamics of the total system, we omit here unnecessary details of
the analysis.

The two pulse sequences are shown in Fig. 4.17. As explained in the previous
section, the entanglement between two TLSs (Fig. 4.17(a)) is achieved by exciting
the qubit with a m-pulse (blue), performing a m/2-rotation with one TLS (green),
then a m-rotation with the other TLS (red). In the presented experiment we changed
the microwave frequency of the m-pulse to 7.462 GHz. Afterwards the qubit is tuned
back to the microwave frequency for the time ¢;. Since the qubit is now in its ground

state, the time evolution of the system can be expressed as

1 ) )
= — (e ™1 e0g) + e =21 g0e)), 4.28
[¥1) \/5( |€0g) |90e)) (4.28)
where hwg; and hwg are the energies of TLS1 and TLS2. The pulse sequence
displayed in Fig. 4.17(b) creates a configuration where the state of the total system
is a product state. After applying a 7/2-pulse on the qubit (blue), the state of the

qubit is (J0) — |1))/v/2. We transfer this state by independent m-rotations on TLS1
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(green) and after a second m/2-pulse on the qubit on TLS2 (red). Thus, we get

) =5 (l9) + e |e)) ®10) @ (Ig) + e 7" [e))

wl»—*l\DIH

(|gOg> + g tws2ty |g0e) + e wsilh le0g) + g Hws1tws2)ty |eOe)) , (4.29)

where [¢)) denotes the not-entangled state.
(a) (b)
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Figure 4.17: Pulse sequences. The bleary black curve symbolizes the resonance spectrum
of the qubit. The two pulse sequences prepare either an entanglement between TLS1 and
TLS2 (a) or a product state between the two TLSs (b). After the preparation, the pulse
sequences below the horizontal grey dashed line are equal.

After the time t;, the continuation of the pulse sequence is for the two cases
the same (purple). The qubit is tuned into resonance with TLS1 and a w-rotation
is performed transferring the current state of TLS1 to the qubit. Thus, we can

eliminate TLS1 from the equations and write the state as

1) = (et [1g) + e™*2"1|0e)) and (4.30)

EIH

(10g) + e~ =" (0e) + e 1t [1g) + e W)t 1e)) (4.31)

w|>—l

[2) =

If now the qubit would be brought into resonance with TLS2 for the time t5, the two
results for the entangled and not-entangled case would be very similar. The states

|1g) and |Oe), depending on their phase, would yield oscillations similar to the chess
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board shown in Fig. 4.7. Since the ground state |0g) and the double excited state
|le) are eigenstates, they will not contribute to the beatings. Therefore, the only
difference would be the amplitude. The oscillations of |) would have a magnitude
which is approximately half of that of the state [¢), which has been observed
experimentally.

However, to see crucial different behavior of states, the additional 7-pulse on the

qubit has to be applied. The unitary matrix for this operation on the qubit reads

(Eq. 3.16)
0 —i
H, = <_i . ) . (4.32)

Apart from some phase, this results in an interchange of the ground and the excited
state of the qubit. One can see also from the Hamiltonian for the qubit-TLS system
in Eq. (3.74) that microwaves turn on the coupling between the states |0g) and |1g),
and between the states |0e) and |le). We can neglect any oscillations between the

states |1g) and |le) since the microwave frequency is detuned from TLS2. Thus,

[3) = (e711]0g) + e7™*"|1e)) and (4.33)

5l

[s) =

1g) + e~™2"|Le) + e~ 1t1|0g) + e~ (@artes2)in|ge)) (4.34)

(

If now the qubit is tuned into resonance with TLS2, the measurement will yield

N | —

completely different results. While |¢)3) is an eigenstate of the total system, the
probability of the qubit of the state [¢)3) will oscillate with a frequency (wy +wsp)/27
which is the sum of the TLS1 and TLS2 frequencies. The measurement results
are shown in Fig. 4.18. The oscillations depending on the time ¢y occur due to
relaxation. After the very first pulse the system starts to decay into the ground state
so that the population of the state |1g) after the second 7-pulse will be higher than
other occupation probabilities. The measurement of the sequence where the TLSs
were entangled (Fig. 4.18(a)) shows also small oscillations depending on ¢;. The
appearence of these oscillations, which are also reproduced by theory (Fig. 4.18(b)),
is not obvious and requires further analysis. As expected, the not-entangled TLSs
show fast oscillations (Fig. 4.18(c),(d)).

We can compare the results also in the frequency domain by performing the
Fourier Transformations of the time ¢; (Fig. 4.19). The possible beating frequen-
cies of the total system are illustrated in Fig. 4.19(e). The entangled TLSs show
oscillations with a frequency of slightly above 200 MHz (Fig. 4.19(a),(b)). This
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Figure 4.18: The experimental results (a) and the theory (b) are shown for the case
of entangled states. The corresponding measurement and theory for the independently
excited TLSs are displayed in (c¢) and (d), respectively. The difference of the two cases
are the oscillation frequencies depending on time ;.

corresponds to the energy difference between the TLSs (210 MHz), however, it is
surprisingly to observe this beating. This frequency vanishes if the TLSs are not
entangled (Fig. 4.19(c),(d)). Instead of that, fast oscillations appear, which were
estimated to have a frequency of 760 MHz. The frequencies of the measurement
and the theory show different amplitudes. This discrepancy occurs probably due
to calibration errors in the experiment. However, the whole spectrum visible on
the measurement plots is also present in the theoretical predictions, though some

frequencies are hardly observable on Fig. 4.19(b) and (d).



CHAPTER 4. EXPERIMENTAL RESULTS

1.0 T T T

0.8

0.6 -

f1 [GHz]

04

02

0.8

f1 [GHZ]

04

02

754 MHz

482 MHz

<
o
D

~

) ] 272 MHz

to [ns]

60

80

(b)

71

0.8

0.6

f1 [GHZ]

0.4

0.2

0.8

100

20 40 60 80
to [ns]

Figure 4.19: (a)-(d) The Fourier Transformations on ¢; of the
corresponding results in Fig. 4.18. One can observe on (c¢) and
(d) the appearance of fast oscillations with the frequency of 760
MHz (no entaglement) in comparison to (a) and (b) where the
TLSs were entangled. The possible beating frequencies between
the states are illustrated in (e).



Chapter 5
Summary

In this work we present experiments with a phase qubit, consisting of a super-
conducting loop which is interrupted by a Josephson juntion (JJ) forming an rf-
SQUID. In sections 2.1 and 2.2 we described its behavior as a point mass inside
an one-dimensional, anharmonic potential. This potential depends on the current
flowing through the JJ, and therefore on the applied external magnetic flux in the
loop. Thus, the level separation defined by the potential can be tuned, resulting
in a change of the resonance frequency of the phase qubit. In section 4.1 we ex-
plained the experimental setup and the spectroscopy of the qubit. The resonance
frequency can be probed by applying microwave pulses to the qubit and measuring
the probability to find the qubit in its excited state.

The spectrum of the phase qubits often contains avoided level crossings, which
indicate the presence of microscopic two-level systems (TLSs) coupled to the qubit,
see section 3.2. While the exact nature of these TLSs remains unclear, the majority
was identified as arising from lattice defects located in the insulating layer of the JJ.
We proved experimentally that TLSs constitute coherent quantum systems. In our
case, the phase qubit was coupled to two TLSs, whose decay time 77 exceeded that
of the qubit by a factor of 4, and the dephasing time 75 was limited by 77 satisfying
the relation of an ideal atom 15 =~ 27}.

We introduced two ways to analyze the dynamics of this tripartite system. The
straightforward way is to use the formalism of the density matrix. Therefore, a
simulation in the programming language Matlab® was performed. It takes into
account three two-level quantum systems coupled to each other. To include also
relaxation and dephasing processes, the simulation solves the master equation in
the Lindblad form for the total system consisting of 8 levels. The only parameters
the simulation requires are the resonance frequencies and the decoherence times T3

and T of each subsystem, and the coupling strengths between the phase qubit and

72
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each of the two TLSs. We showed that this model is in very good agreement with
the coherent dynamics of the total system observed in experiments.

The alternative way to understand the dynamics is more intuitive. We introduced
the representation and the time evolution of a two-level quantum system on the
Bloch sphere, see section 3.1. Here, the quantum state can be described by the
azimuth and polar angle of the Bloch vector of unity length. For a given Hamiltonian,
the time evolution of the vector can be visualized by its rotation around the axis
defined by the eigenstates. This representation is also useful when considering the
qubit-TLS or TLS-qubit-TLS system, if reasonably restricting to a two dimensional
subspace. Since during the experiments the total system had only one excitation,
the population of states corresponding to more than one excitation can be neglected.
The ground state does not interact with other states, and therefore does not affect
the rotations. However, the system exponentially decays into the ground state and
the contrast of observed quantum beatings goes to zero.

The coupled qubit-TLS system consists of 4 levels. Therefore, only two states
remain, whose dynamics can be explained on the Bloch sphere in a very clear way. In
section 4.2, we engineered the eigenstates of the qubit-TLS system in resonance by
two different approaches: by a double rotation of the Bloch vector around the x- and
z-axis, and by a direct rotation around a prepared axis. To prove the preparation
of states, we tuned the qubit into resonance with the TLS and observed quantum
beatings between the states. Exactly at the times when the eigenstates were gener-
ated, the oscillations vanished. Due to this coherence and the high level of control,
we demonstrated how to prepare arbitrary states of both the qubit and TLS. Fur-
thermore, we have discussed that these results can be compared to a tomography
of the prepared states. The restriction to the two-dimensional subspace results in a
Hamiltonian, which has exactly the same form as that of the driven qubit.

For the first time, we managed to observe coherent dynamics between two TLSs
resulting in an entanglement between them. This experiment is described in section
4.3. To visualize also the dynamics of the tripartite system TLS-qubit-TLS on the
Bloch sphere, we took advantage that the TLSs are separated from each other by
more than 200 MHz. Therefore, if the qubit is in resonance with one TLS, the
time evolution of the other TLS corresponds to that of a free quantum system. The
entanglement between two TLSs is engineered by entangling first the qubit with
one TLS and then transferring the remaining excitation of the qubit to the other
TLS. We have verified the entangled state by analyzing the beating frequencies.
The TLS-qubit-TLS system was prepared once in the state of entangled TLSs and

the other time in a separable state of the two TLSs, in which the qubit was in its
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ground state after the preparation. By applying an additional microwave pulse we
could observe oscillations with completely different frequencies. While the beating
frequency in the case of entangled states corresponds to the energy difference of the
two TLSs, the oscillations in the case of the separable state showed all 4 frequencies
corresponding to the energy differences of the four levels.

In conclusion, our experiments show great opportunity for using phase qubits to
manipulate and control microscopic two-level defects in solids. Therefore, it is fair
to assume that one can also use TLSs as a quantum memory or even as independent

qubits.



Bibliography

1]

2]

3]

4]

[5]

[6]

7]

8]

Markus Ansmann, H. Wang, Radoslaw C. Bialczak, Max Hofheinz, Erik Lucero,
M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, A. N. Cleland,
and John M. Martinis, Violation of Bell’s inequality in Josephson phase qubits,
Nature 461 (2009), no. 7263, 504 506.

O. Astafiev, Yu. A. Pashkin, Y. Nakamura, T. Yamamoto, and J. S. Tsai,
Quantum Noise in the Josephson Charge Qubit, Phys. Rev. Lett. 93 (2004),
no. 26, 267007.

Antonio Barone and Gianfranco Paterno, Physics and Applications of the
Josephson Effect, Wiley-VCH, 1982.

P. Bushev, C. Miiller, J. Lisenfeld, J. H. Cole, A. Lukashenko, A. Shnirman,
and A. V. Ustinov, Hybrid quantum system surveyed using multi-photon spec-

troscopy, ArXiv e-prints (2010).

L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko,
J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, Coherent Dynamics of Coupled
FElectron and Nuclear Spin Qubits in Diamond, Science 314 (2006), no. 5797,
281-285.

I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, Coher-
ent Quantum Dynamics of a Superconducting Fluz Qubit, Science 299 (2003),
no. 5614, 1869-1871.

J. 1. Cirac and P. Zoller, Quantum Computations with Cold Trapped Ions, Phys.
Rev. Lett. 74 (1995), no. 20, 4091-4094.

John Clarke and Alex I. Braginski, The SQUID Handbook: Fundamentals and
Technology of SQUIDs and SQUID Systems, Wiley-VCH; 1 edition, 2004.

I5)



BIBLIOGRAPHY 76

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

20]

[21]

John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt,
Proposed Experiment to Test Local Hidden-Variable Theories, Phys. Rev. Lett.
23 (1969), no. 15, 880-884.

Claude Cohen-Tannoudji, Bernard Diu, and Frank Laloe, Quantum Mechanics,
Volume 1, Wiley-Interscience, 2006.

J. H. Cole, J. C. Ang, and A. D. Greentree, Solving super operator problems,
Centre of Quantum Computer Technology, School of Physics, University of
Melbourne, Victoria 3010, Australia, September 17 2009.

Jared H. Cole, Andrew D. Greentree, Daniel K. .. Oi, Sonia G. Schirmer,
Cameron J. Wellard, and Lloyd C. L. Hollenberg, Identifying a two-state Hamal-
tonian in the presence of decoherence, Phys. Rev. A 73 (2006), no. 6, 062333.

G. M. D’Ariano, U. Leonhardt, and H. Paul, Homodyne detection of the density
matriz of the radiation field, Phys. Rev. A 52 (1995), no. 3, R1801-R1804.

M. H. Devoret, A. Wallraff, and J. M. Martinis, Superconducting Qubits: A
Short Review, ArXiv Condensed Matter e-prints (2004).

Bernard Diu, Claude Cohen-Tannoudji, and Frank Laloe, Quantum Mechanics,
Volume 2, Wiley-Interscience, 2006.

David P. DiVincenzo, The Physical Implementation of Quantum Computation,
Fortschritte der Physik 48 (2000), no. 9-11, 771-783.

G. J. Dolan, Offset masks for lift-off photoprocessing, Applied Physics Letters
31 (1977), no. 5, 337-339.

Alex Grishin, Igor V. Yurkevich, and Igor V. Lerner, Low-temperature deco-
herence of qubit coupled to background charges, Phys. Rev. B 72 (2005), no. 6,
060509.

E. L. Hahn, Spin Echoes, Phys. Rev. 80 (1950), no. 4, 580 594.

A. Heuer and R. J. Silbey, Microscopic description of tunneling systems in a
structural model glass, Phys. Rev. Lett. 70 (1993), no. 25, 3911-3914.

Max Hofheinz, H. Wang, M. Ansmann, Radoslaw C. Bialczak, Erik Lucero,
M. Neeley, A. D. O’Connell, D. Sank, J. Wenner, John M. Martinis, and A. N.

Cleland, Synthesizing arbitrary quantum states in a superconducting resonator,
Nature 459 (2009), no. 7246, 546-549.



BIBLIOGRAPHY 7

[22]

23]

[24]

[25]

26]

[27]

28]

[29]

[30]

31]

32|

33|

A. A. Houck, D. I. Schuster, J. M. Gambetta, J. A. Schreier, B. R. John-
son, J. M. Chow, L. Frunzio, J. Majer, M. H. Devoret, S. M. Girvin, and
R. J. Schoelkopf, Generating single microwave photons in a circuit, Nature
449 (2007), no. 7160, 328-331.

http://www.oxford instruments.com.

G. Tthier, E. Collin, P. Joyez, P. J. Meeson, D. Vion, D. Esteve, F. Chiarello,
A. Shnirman, Y. Makhlin, J. Schriefl, and G. Schon, Decoherence in a super-
conducting quantum bit circuit, Phys. Rev. B 72 (2005), no. 13, 134519.

E.T. Jaynes and F.W. Cummings, Comparison of quantum and semiclassical
radiation theories with application to the beam maser, Proceedings of the IEEE
51 (1963), no. 1, 89 — 109.

B. D. Josephson, The discovery of tunnelling supercurrents, Rev. Mod. Phys.
46 (1974), no. 2, 251-254.

B. E. Kane, A silicon-based nuclear spin quantum computer, Nature 393 (1998),
no. 6681, 133-137.

A. Yu. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat, I. I. Khodos,
Yu. B. Gorbatov, V. T. Volkov, C. Journet, and M. Burghard, Supercurrents
Through Single-Walled Carbon Nanotubes, Science 284 (1999), no. 5419, 1508—
1511.

E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum
computation with linear optics, Nature 409 (2001), no. 6816, 46-52.

L. D. Landau and L. M. Lifshitz, Quantum Mechanics (Non-Relativistic The-
ory) Volume 3, Butterworth-Heinemann (3 edition), 1981.

Jiirgen Lisenfeld, Clemens Miiller, Jared H. Cole, Pavel Bushev, Alexander
Lukashenko, Alexander Shnirman, and Alexey V. Ustinov, Rabi spectroscopy of
a qubit-fluctuator system, Phys. Rev. B 81 (2010), no. 10, 100511.

Juergen Lisenfeld, Ezperiments on Superconducting Josephson Phase Quantum
Bits, Ph.D. thesis, Friedrich-Alexander-Universitit Erlangen-Niirnberg, 2008.

Daniel Loss and David P. DiVincenzo, Quantum computation with quantum
dots, Phys. Rev. A 57 (1998), no. 1, 120-126.



BIBLIOGRAPHY 78

[34]

[35]

[36]

137]

[38]

[39]

[40]

|41]

42]

43|

|44]

[45]

Vladimir E. Manucharyan, Jens Koch, Leonid I. Glazman, and Michel H. De-
voret, Fluzonium: Single Cooper-Pair Circuit Free of Charge Offsets, Science
326 (2009), no. 5949, 113-116.

I. Martin, L. Bulaevskii, and A. Shnirman, Tunneling Spectroscopy of Two-
Level Systems Inside a Josephson Junction, Phys. Rev. Lett. 95 (2005), no. 12,
127002.

John Martinis, Superconducting phase qubits, Quantum Information Processing
8 (2009), no. 2, 81-103.

John M. Martinis, K. B. Cooper, R. McDermott, Matthias Steffen, Markus
Ansmann, K. D. Osborn, K. Cicak, Seongshik Oh, D. P. Pappas, R. W. Sim-
monds, and Clare C. Yu, Decoherence in Josephson Qubits from Dielectric Loss,
Phys. Rev. Lett. 95 (2005), no. 21, 210503.

John M. Martinis, S. Nam, J. Aumentado, and C. Urbina, Rabi Oscillations in
a Large Josephson-Junction Qubit, Phys. Rev. Lett. 89 (2002), no. 11, 117901.

G. Mauro D’Ariano, M. G. A. Paris, and M. F. Sacchi, Quantum Tomography,
ArXiv Quantum Physics e-prints (2003).

D. E. McCumber, Effect of ac Impedance on dc Voltage- Current Characteristics
of Superconductor Weak-Link Junctions, Journal of Applied Physics 39 (1968),
no. 7, 3113-3118.

Clemens Miiller, Alexander Shnirman, and Yuriy Makhlin, Relazation of
Josephson qubits due to strong coupling to two-level systems, Phys. Rev. B
80 (2009), no. 13, 134517.

Rémy Mosseri and Rossen Dandoloff, Geometry of entangled states, Bloch
spheres and Hopf fibrations, Journal of Physics A: Mathematical and General
34 (2001), no. 47, 10243.

Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum

Information, Cambridge University Press, 2000.

E. Paladino, L. Faoro, G. Falci, and Rosario Fazio, Decoherence and 1/f Noise
in Josephson Qubits, Phys. Rev. Lett. 88 (2002), no. 22, 228304.

V. V. Schmidt, P. Miiller, A. V. Ustinov, and 1. V. Grigorieva, The Physics of
Superconductors: Introduction to Fundamentals and Applications, Springer; 1
edition, 2002.



BIBLIOGRAPHY 79

[46]

|47]

|48

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

J. A. Schreier, A. A. Houck, Jens Koch, D. I. Schuster, B. R. Johnson, .J. M.
Chow, J. M. Gambetta, J. Majer, L. Frunzio, M. H. Devoret, S. M. Girvin,

and R. J. Schoelkopf, Suppressing charge noise decoherence in superconducting
charge qubits, Phys. Rev. B 77 (2008), no. 18, 180502.

Marlan O. Scully and M. Suhail Zubairy, Quantum Optics, Cambridge Univer-
sity Press, 1997.

R. W. Simmonds, K. M. Lang, D. A. Hite, S. Nam, D. P. Pappas, and John M.
Martinis, Decoherence in Josephson Phase Qubits from Junction Resonators,
Phys. Rev. Lett. 93 (2004), no. 7, 077003.

Matthias Steffen, M. Ansmann, Radoslaw C. Bialczak, N. Katz, Erik Lucero,
R. McDermott, Matthew Neeley, E. M. Weig, A. N. Cleland, and John M.
Martinis, Measurement of the Entanglement of Two Superconducting Qubits
via State Tomography, Science 313 (2006), no. 5792, 1423 1425.

Matthias Steffen, M. Ansmann, R. McDermott, N. Katz, Radoslaw C. Bialczak,
Erik Lucero, Matthew Neeley, E. M. Weig, A. N. Cleland, and John M. Martinis,
State Tomography of Capacitively Shunted Phase Qubits with High Fidelity,
Phys. Rev. Lett. 97 (2006), no. 5, 050502.

W. C. Stewart, CURRENT-VOLTAGE CHARACTERISTICS OF JOSEPH-
SON JUNCTIONS, Applied Physics Letters 12 (1968), no. 8, 277-280.

D. J. Van Harlingen, T. L. Robertson, B. L. T. Plourde, P. A. Reichardt,
T. A. Crane, and John Clarke, Decoherence in Josephson-junction qubits due
to critical-current fluctuations, Phys. Rev. B 70 (2004), no. 6, 064517.

D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve,
and M. H. Devoret, Manipulating the Quantum State of an FElectrical Circuit,
Science 296 (2002), no. 5569, 886-889.

Graham A. Webb, Nuclear Magnetic Resonance, Royal Society of Chemistry;
1st Edition. edition, 2010.

K. B. Whaley and J. C. Light, Rotating-frame transformations: A new approz-
imation for multiphoton absorption and dissociation in laser fields, Phys. Rev.
A 29 (1984), no. 3, 1188-1207.

J. Q. You and Franco Nori, Superconducting Circuits and Quantum Informa-
tion, Physics Today 58 (2005), no. 11, 42-47.



BIBLIOGRAPHY 80

[57] Prof. Dr.Claus  Zimmermann, Quantenoptik, Internet, 2006,
http://www.pit.physik.uni-tuebingen.de/zimmermann /lehre /skripten /
Quantenoptik.pdf.



Acknowledgements

First of all, I would like to express my gratitude towards Prof. Dr. Alexey V.
Ustinov for letting me work on the very interesting topic of my diploma thesis. His
professional and mental support during my work were very helpful for me.

Dr. Pavel Bushev earns my thanks for supervising my work and for our useful
discussions. He introduced me to the equipment and the evaluation software needed
for our experiments.

I would like to thank Dr. Jared Cole for explaining me theoretical models and
supervising my simulation.

My thanks go to Dr. Jiirgen Lisenfeld for listening to my professional and private
problems, and especially for his changes on the electronics so that I could perform
my last measurements more accurately.

I thank Dr. Alexander Lukashenko for millikelvin temperatures and good isola-
tion from the environment.

I would like to thank Philipp, Susanne, Bernhard, Piotr, Sebastian and Anastasia
for creating a pleasant and funny atmosphere in the room 410.

A special thanks goes to all members of our group for the nice coffee breaks,
collective lunches, funny chats and interesting talks.

Orpomuoe cnacubo MouM pomuresisaM, cecTtpéuke, Cane u Mpimam (geTn)
3a Ballly MOPAJLHYIO MOAAEP:KKY B TeUeHUU Moell yuéonl. be3 cBoeBpeMeHHOM
MOMOINY MaMBbl, MOSI JTUIJIOMHAasA paboTa He HaImIa OLI CBOETO 3aBEPIICHUS.

S dnaromapro Moio cHe-kiHKy TaHIOMIKY 3a TO, YTO OHA €CTL Y MEHS U 34
TO, 4TO OHA ObLIa BTOPLIM KoppekropoMm. Cnacubo mouypre Bepyme 3a To,
YTO OHA Mapuiia MHE CBOIO YJBIOKY Kaxkmoe yTpo. A Hameii komke Jluze 3a
TO, UTO OHA COCTABJIsAJA MHE KOMIIAHMWIO B HOYHLIE YACHI JEKA HA MUCHLMEHHOM

CTOJIEC.
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