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Chapter I Introduction

Information processing of present computers being based on classical binary bits is
described using the language of classical Newtonian mechanics [DiV00]. Pioneers
of quantum computation like Deutsch [Deu85] and Feynman [Fey82] were triggered
by the thought, that computers obeying the laws of quantum mechanics could have
much greater computational power since Newtonian mechanics appears as a special
limit of quantum mechanics [DiV00].

While iterative tasks can not be performed faster using a quantum computer
[Bea01], some others are indeed sped up exponentially such as Shor´s algorithm
for factoring an n-digit number [Sho97] or other algorithms exploiting “quantum
parallelism” [Deu85]. This promises to employ a quantum computer in several
computation power intensive applications in science, industry and medicine, to be
able to solve problems faster or even in the first place. In addition, there are cer-
tain tasks that can be realized on a quantum machine without having a classical
counterpart such as quantum cryptography [Ben84], for instance.

The main building block of a quantum computer is called a qubit. In contrast
to a classical bit which is either in state zero or one, the state of a qubit can be
any superposition a|0〉+ b|1〉 of its fundamental states, usually denoted as |0〉, |1〉.
Therefore it is a quantum mechanical two-level system like a spin 1/2 particle and
its state is intuitively described as a certain point on the Bloch sphere. In that
respect, the qubit is considered as an artificial atom.

In general, the state of a system consisting of n qubits is a superposition of 2n
eigenstates. A quantum gate accepts such a superposition state as its input and
computes the corresponding output for each eigenstate simultaneously. This is the
mentioned quantum parallelism.

A physical device is identified as a qubit by verifying the “five [...] requirements for
the implementation of quantum computation” by D. DiVincenzo [DiV00]. Accord-
ingly a qubit needs to be sufficiently controllable allowing to write, manipulate or
readout its state and hold quantum information for a certain time.

The dynamics of a qubit is characterized by its coherence times. Since the qubit is
weakly coupled to its environment, it will decohere after some time. This mechan-
ism is very fundamental, since it constitutes the link between quantum and classical
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behaviour [DiV00]. A qubit can only serve as a useful unit for a quantum computer,
if the relevant decoherence times are long enough to perform a computational op-
eration. Fortunately, it was shown [Sho95], that quantum error correction during
such an operation is possible and can be applied for quantum computation. This
means that the decoherence times of the employed qubit need to be 104−105 times
[DiV00] the typical time for performing a single quantum gate operation, which
corresponds to the time necessary for successful error correction. While this places
still challenging requirements on the qubits´ coherence times, it is in contrast to
the duration of the total computational operation, which is thereby not limited.

Due to the intriguing prospects of quantum computation in general and the strong
demand for qubits with increased coherence times, a great variety of approaches to
build physical devices operating in the quantum mechanical regime have emerged
in the last 15 years. Among suggestions and realizations of quantum hardware in
quantum optics [Kni01], magnetic resonance spectroscopy [Kan98] and quantum
dot research [Los98], a promising technology for qubit realization is based on su-
perconducting devices and the Josephson effect [Cla08].

The main types of superconducting qubits are flux, charge and phase qubit, with
their designation indicating the good quantum number to distinguish the funda-
mental qubit states. Their key element is the Josephson tunnel junction, which is
a weak link of two superconducting electrodes allowing Cooper pairs to tunnel co-
herently. A Josephson junction behaves similar to a superconducting LC-resonator
which can be regarded as quantum mechanical oscillator having distinct energy
levels. However, since the Josephson junction is non-linear, the energy levels are
not equidistant and therefore certain levels can unambiguously be identified with
the qubit eigenstates |0〉, |1〉.

Finding new approaches to implement qubits with enhanced performance to enable
quantum error correction is the ultimate aim of present research. During the past
15 years, the coherence times of superconducting qubits increased exponentially
[Dev13], corresponding to a Moore´s law progression. Major improvements in qubit
performance could be achieved by combining the advantages of existing types and
avoid dominant decoherence channels. Among more advanced innovations such as
the quantronium [Vio02] or fluxonium [Man09], the transmon [Koc07] is the most
promising candidate. While the simple charge qubit developed around 2000 had a
lifetime in the range of 5 ns, a transmon embedded in a three-dimensional cavity
reached a coherence time of up to 100µs [Rig12] in 2012.

Superconducting qubits are very promising, not only when it comes to high coher-
ence times. Connectivity and control of the qubits is accomplished comparatively
easy and a possible tunability guarantees high flexibility in application. Thinking
of future quantum computation, scalability of the quantum circuit becomes im-
portant, which is given in the case of two-dimensional quantum integrated circuits
as demonstrated in [Bar13].

In this work, a frequency tunable transmon qubit together with its manipulation
and readout circuit is designed, simulated and prepared. The employed microstrip
design pulls the electric field lines into the low-loss substrate material due to a
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backside metallization and reduces the field strength at surface dielectrics. This
promises an increased relaxation time of the investigated transmon. A similar
approach but without tuning was taken by Sandberg et al. [San13].

A decisive advancement of the conventional charge qubit namely the insertion of
a large shunt capacitance in parallel to the qubit´s Josephson junction shifts the
operation point of the transmon into the phase regime. The qubit in this con-
figuration is insensitive to charge noise not only at certain charge “sweet spots”.
This leads to strongly enhanced dephasing times which is crucial when it comes to
quantum error correction and the demand for a scalable quantum system.

Novel features of the microstrip transmon investigated in this work are the tun-
ability, enabling frequency selective coupling to the readout resonator as well as
flexibility concerning the measurement regime. The multi-plexed chip geometry
allows for simultaneous qubit readout.

Josephson tunnel junctions are prepared using aluminum sputter deposition and a
cross junction technique in a two-step optical lithography process, ensuring robust-
ness of the fabrication process. Transport characterization is performed at room
temperature as well as in a cryogenic environment.

Corresponding spectroscopic qubit measurements are carried out in a dilution re-
frigerator.
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Chapter II Theory

1 The Josephson junction

The key element of the transmon investigated in this work is the Josephson tunnel
junction. The effect of a current flowing across the junction without giving rise to
a voltage drop, even though the two electrodes of the junction are not in direct
contact, is strongly based on the properties of superconductivity.

The following sections give some important features of the microscopic theory of
superconductivity, the Josephson equations are derived from a microscopic point
of view and a simple model is presented to understand the characteristics of a
Josephson junction.

1.1 Superconductivity

In 1911, H. Kammerlingh-Onnes measured the temperature dependence of the
electrical resistivity of mercury. While decreasing the temperature, he found that
the resistivity drops abruptly to exactly zero at a certain temperature [Kam11].
This phenomenon was later called superconductivity.

The property of undergoing such a phase transition from the normal to the super-
conducting state at a characteristic critical temperature can be observed in a wide
range of metals. Besides the most striking effect of vanishing electrical resistance,
superconductors behave as a perfect diamagnet when placed inside a magnetic field,
which is referred to as the Meissner-Ochsenfeld effect.

The common theory of superconductivity requires a net attractive potential between
electrons close to the Fermi surface of a conductor. Although the direct Coulomb
interaction between two electrons is repulsive, ions as well as the other N − 2 elec-
trons in an N -electron system move in response to the electronic motion which
leads to an “overscreening” of the Coulomb interaction [AsMe76]. Within the so
called weak coupling theory, this effect is possible when the energy difference of
two electrons is less or of the order of ~ωD which is a typical phonon energy and
ωD the Debye frequency.
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1 THE JOSEPHSON JUNCTION

This net attractive interaction would be far too weak to lead to a bound state
of two isolated electrons. L. N. Cooper however showed, that in the presence of
a filled Fermi sphere, the formation of a bound state, a Cooper pair, is possible
no matter how small the attraction might be [Coo56]. This is due to the Pauli
exclusion principle.
Within the microscopic theory of superconductivity (BCS theory), developed by
Bardeen, Cooper and Schrieffer [Bar57], all electrons within the region of ±~ωD
around the Fermi sphere are assumed to form Cooper pairs. Due to the bosonic
nature of a Cooper pair, consisting of two electrons with opposite spin and mo-
mentum, each pair can occupy the same state. In analogy to a Bose-Einstein
condensation, all Cooper pairs in a superconductor condensate into a common
ground state which is called the BCS ground state and can be described by a single
macroscopic wave function

Ψ(~r) = Ψ0e
iϕ(~r). (1)

Its absolute square |Ψ0|2 corresponds to the Cooper pair density while ϕ(~r) is the
associated collective phase of the wave function.
The absolute value of the wave function |Ψ| also appears in the phenomenological
theory of superconductivity introduced by V. Ginzburg and L. Landau where it is
called order parameter [Gin50]. According to the theory, the transition of a normal
conductor to its superconducting state at a critical temperature Tc, is described
as a second order phase transition from a thermodynamic point of view. This
corresponds to a discontinuity of the specific heat at the phase transition, as is
the case for instance at the second order phase transition of a paramagnet to a
ferromagnet.
Another intriguing property of superconductivity is the quantization of magnetic
flux, which is induced by the persistent current flowing in a superconducting ring.
This can easily be derived using the London equation [Ann11]

~j ∝ ~A, (2)

with ~j the current density and ~A the vector potential. From the claim of local gauge
invariance, the vector potential is modified according to equation (3), employing
the phase ϕ from equation (1).

~A→ ~A+ ~
2e∇ϕ (3)

One now chooses an integration path along a closed loop in the superconducting
ring well in excess of the penetration depth, which is a measure for the thickness of
the surface layer of a superconductor, where screening currents are flowing. Thus
the current density vanishes everywhere on the integration path.

0 =
˛

~A · d~r + ~
2e

˛
∇ϕ · d~r (4)

Using Stokes´ theorem and the definition of magnetic flux Φ, the first term of
equation (4) reduces to˛

~A · d~r =
ˆ
∇× ~A · d~S =

ˆ
~B · d~S = Φ, (5)
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1.2 The Josephson equations

superconductor A

superconductor B

dielectric layer

(a) (b)

Figure 1: (a) Schematic of a Josephson tunnel junction. Two superconductors are
separated by a dielectric layer which appears as a weak link. (b) Circuit
model of a Josephson junction. Intrinsic capacitance due to the electrode
plates and the ideal tunnel element can be regarded to be connected in
parallel. A short notation is shown on the right.

~B being the magnetic induction through an area S. Performing the scalar product,
equation (4) gives

0 = Φ + ~
2e

˛
dϕ. (6)

Since the wave function is single valued, ϕ has to be periodic in 2π and one can
write

Φ = ~
2e2πn = h

2en = nΦ0, n ∈ Z. (7)

Therefore the flux through the superconducting ring can only take integer values
of the flux quantum Φ0, which is given by

Φ0 = h

2e. (8)

It is notable that the charge 2e of a Cooper pair rather than the charge of a single
electron occurs in the denominator, showing that the supercurrent is carried by
pairs of electrons.

1.2 The Josephson equations

A Josephson tunnel junction consists of two superconductors being close together
but separated by a thin insulating dielectric layer. It is schematically depicted in
figure 1(a). The wave functions of the two superconductors partly penetrate into
the dielectric layer due to the proximity effect [Sch97] and therefore can interfere,
which corresponds to tunnelling of electrons through the barrier. Since the dielec-
tric does not short the adjacent superconductors and at the same time enables
interference of the wave functions, one calls it a weak link. According to equation
(1), both superconductors A and B can be described by a single wave function,
respectively. One has

ΨA(~r) = Ψ0e
iϕA(~r), ΨB(~r) = Ψ0e

iϕB(~r) (9)
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1 THE JOSEPHSON JUNCTION

under the assumption of equal Cooper pair densities.

In 1962, B. Josephson predicted theoretically two fascinating effects to occur at such
a tunnel junction when its electrodes are in the superconducting state. Therefore
it is called a Josephson tunnel junction. These effects will be derived following the
analysis of [Dev95].

As depicted in figure 1(b), a Josephson tunnel junction can be regarded as an ideal
tunnel element connected in parallel with a capacitor. The capacitive contribution
emerges from the parallel arrangement of the two electrode plates. Assuming that
Cooper pairs with charge −2e tunnel through the Josephson junction, the charge
Q̂(t) of electrons having passed is

Q̂(t) = −2en̂(t) (10)

with n̂ being the number operator of Cooper pairs which have tunnelled. The
respective Hamiltonian ĤC for the energy on the capacitor is

ĤC = Q̂Û = −2en̂Û , (11)

with Û the voltage operator. For a quantum mechanical description, all relevant
quantities are treated as operators.

According to [Dev95], one can write down a coupling Hamiltonian ĤJ for electrons
tunnelling through the Josephson junction, given in equation (12). EJ is called the
Josephson energy and it will turn out to be a characteristic macroscopic parameter
to describe the properties of the Josephson junction.

ĤJ = −EJ2

+∞∑
n=−∞

[|n〉〈n+ 1|+ |n+ 1〉〈n|] (12)

Equation (12) can be motivated as follows: The summation is carried out over
projection operators that either increment or decrement the number of Cooper
pairs. This exactly corresponds to the event of a Cooper pair tunnelling through
the barrier.

To evaluate the coupling Hamiltonian ĤJ , a phase δ is introduced. It turns out
that its corresponding operator δ̂ is the canonical conjugate of the number operator
n̂. This allows to write the new basis states |δ〉 as a Fourier transform according
to equation (13).

|δ〉 =
∑
n

einδ|n〉 (13)

Likewise, because of the periodicity of δ, it is

|n〉 = 1
2π

ˆ 2π

0
dδe−inδ|δ〉. (14)
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1.2 The Josephson equations

Plugging into equation (12), one gets the coupling Hamiltonian in phase basis.

ĤJ = −EJ2
1

(2π)2
∑
n

ˆ 2π

0
dδ
ˆ 2π

0
dδ′

[
e−inδ|δ〉ei(n+1)δ′〈δ′|+ e−i(n+1)δ′ |δ′〉einδ〈δ|

]
= −EJ2

1
(2π)2

ˆ 2π

0
dδ
ˆ 2π

0
dδ′

[
eiδ + e−iδ

]
2πδ(δ − δ′)|δ〉〈δ|

= −EJ2
1

2π

ˆ 2π

0
dδ2 cos δ|δ〉〈δ|

= −EJ cos δ̂ (15)

In the last step, the operator representation

eiδ̂ = 1
2π

ˆ 2π

0
dδeiδ|δ〉〈δ| (16)

was introduced. Using equation (13), one can verify the relations

eiδ̂|n〉 = |n− 1〉, e−iδ̂|n〉 = |n+ 1〉. (17)

Noting that only periodic functions of δ̂ like the exponential function used in equa-
tion (16) have non-ambiguous meaning, one can write a commutation relation for
the two canonical conjugated operators:[

δ̂, n̂
]

= i (18)

Using Heisenberg´s equation of motion and related algebraic relations allows to
calculate the time evolution of the phase operator δ̂:

d
dt δ̂ = 1

i~

[
δ̂, Ĥ

]
= −1

~
∂Ĥ

∂n̂
= 2e

~
Û (19)

Evaluating similarly the current operator Î gives

Î = d
dtQ̂ = −2edn̂dt

= −2e 1
i~

[
n̂, Ĥ

]
= 2e

~
∂Ĥ

∂δ̂
= 2e

~
EJ sin δ̂

⇒ Î = Ic sin δ̂. (20)

In both cases the full Hamiltonian Ĥ = ĤC + ĤJ of the system from equations
(11) and (15) is employed.

Equation (20) is the first, or dc-Josephson equation which states, that a Josephson
junction can sustain a zero voltage supercurrent below the critical current Ic. If the
current exceeds Ic, a voltage drop occurs which corresponds to the time evolution
of the phase, as given in equation (19).
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1 THE JOSEPHSON JUNCTION

-2

-4

0

0

-6

-8

(a) (b)

Figure 2: (a) Equivalent circuit diagram showing the RCSJ model of a Josephson
tunnel junction. The cross symbolizes the ideal Josephson junction while
C includes both, external and intrinsic Josephson capacitance. (b) “Wash-
board” potential U(δ)/EJ with respect to the phase difference δ for different
bias currents γ. For T = 0 and for small currents (γ ≈ 0), a virtual phase
particle is trapped in one of the potential wells and the voltage U across the
junction is zero. This is called the superconducting state. With increasing
current, the potential gets tilted and for I = Ic (γ = 1), the virtual particle
can run down the “washboard” since the derivative of the potential is always
non-positive. This corresponds to a voltage drop across the junction and is
called the dissipative state [Dev95], see section 1.4.

It is crucial to note that the phase δ in the above equations corresponds to the
phase difference ∆ϕ of the wave functions of the adjacent superconductors. It is

∆ϕ = ϕA − ϕB. (21)

The phase difference ∆ϕ is not unambiguously defined for a certain physical situ-
ation since it is not a gauge-invariant quantity. To be explicitly related to physical
quantities, it is replaced by the gauge-invariant phase δ.
Equation (20) also gives the definition of the critical current in terms of the Joseph-
son energy EJ

Ic = 2e
~
EJ = 2π

Φ0
EJ (22)

where again the flux quantum Φ0 from equation (8) enters.
The Josephson equations can also be obtained by a semi-phenomenological ap-
proach based on the Ginzburg-Landau theory. Derivations were given by Feynman
[Fey65] and Aslamazov and Larkin [Asl65].
The critical current Ic depends on the properties of the superconductors forming
the Josephson junction as well as on the sheet resistance of the dielectric layer.
Formulas to estimate Ic from microscopic quantities are given in section III.1.

1.3 Resistively and capacitively shunted junction model

The Resistively and Capacitively Shunted Junction (RCSJ) model was introduced
by W. Stewart and D. McCumber [Ste68, McC68] to describe the current-voltage
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1.3 Resistively and capacitively shunted junction model

characteristic (IV-characteristic) of a Josephson tunnel junction. It uses the simple
equivalent circuit shown in figure 2(a) which is valid for small junction dimensions
when δ = δ(t) is not a function of space.
According to Kirchhoff´s rules, the total current I which is flowing through the
Josephson junction is

I = IJ + Iq + IC = IJ + U

R
+ CU̇. (23)

For the quasi-particle current, which is a current of single electrons, it is assumed
that R is a constant. The capacitance C in the displacement current IC is a sum
of the external capacitance Cext and the intrinsic Josephson capacitance CJ .
Inserting the Josephson equations (19) and (20) into equation (23) yields a differ-
ential equation for the phase difference δ:

0 = −I + Ic sin δ + 1
R

Φ0
2π δ̇ + C

Φ0
2π δ̈ (24)

Comparing equation (24), normalized to energy units, with the differential equation
of a classical damped harmonic oscillator

0 = mẍ+Dẋ+ ∂U(x)
∂x

(25)

with particle mass m, damping constant D and potential U(x), one can identify

m = C

(Φ0
2π

)2
, (26)

D = 1
R

(Φ0
2π

)2
(27)

and

∂U(δ)
∂δ

= IcΦ0
2π (−γ + sin δ)

⇒ U(δ) = EJ (−γδ − cos δ) (28)

using the definition (22) of the Josephson energy EJ and the current normaliza-
tion γ = I

Ic
. Therefore, the Josephson phase δ behaves as a virtual particle of

mass m according to equation (26). Equation (28) gives the so-called “washboard”
potential, which is plotted in figure 2(b) for different bias currents γ.
Solving equation (24) yields the angular resonance frequency ω of the Josephson
junction. For small damping, it is

ω2 = 1
m

∂2U

∂x2 →
2πIc
Φ0C

cos δ (29)

using equations (26), (28). It is convenient to write

ω2 = ω2
p cos δ = ω2

p

√
1− sin2 δ = ω2

p

√
1− γ2 (30)

11



1 THE JOSEPHSON JUNCTION

where the plasma frequency

ωp =
√

2πIc
Φ0C

(31)

is introduced. From equation (30) one can see that the resonance frequency ω of
the Josephson junction decreases with increasing current γ.

Using the common formula for the resonance frequency of an LC-resonator

ω2 = 1
LC

(32)

with inductance L and capacitance C, one can define the Josephson inductance LJ
using equation (30) to be

LJ = 1
ω2C

= Φ0
2πIc cos δ . (33)

It is obvious that the Josephson inductance is non-linear in the phase difference δ.
This property is of fundamental importance for the Josephson junction to serve as
the key element of a qubit.

It is important to note that the inductance given in equation (33) is not a geometric
inductance describing the capability of a circuit to store magnetic energy but rather
a kinetic inductance originating from the inertia of charge carriers.

Conveniently, the damping of a Josephson junction is described by the Stewart-
McCumber parameter βc. It is defined as the square of the quality factor Q of a
parallel LC-resonator [TiSc91, Tin04]:

β1/2
c = Q = ωpRC (34)

1.4 Tunnelling of Cooper pairs and quasi-particles

Josephson junctions which are employed for qubits are required to work in the un-
derdamped regime where βc > 1. According to equation (34), this can be achieved
with a high parallel resistance R and a large enough capacitance C.

For temperatures close to T = 0, in the absence of thermal processes, a typ-
ical current-voltage characteristic (I-V characteristic) of a strongly underdamped
Josephson junction is plotted in figure 3(a). Figure 3(b) shows schematic energy
diagrams for different voltages U across the junction.

i) Increasing the bias current from I = 0, the voltage across the Josephson junc-
tion remains zero. This is the superconducting state described by the first
Josephson equation (20) where Cooper pairs tunnel through the barrier co-
herently. There are no quasi-particles, since all electrons are condensed in
the superconducting condensate. In the “washboard” model from section
1.3, this corresponds to the virtual phase particle being trapped in one of the
potential wells.
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1.4 Tunnelling of Cooper pairs and quasi-particles

I

U

i)

ii)

iii)

iv)

E E E E

Figure 3: (a) Typical I-V characteristic of a current biased underdamped Josephson
junction of electrodes with equal superconducting gap ∆. As explained in
the text, a hysteresis appears. For voltages eU � 2∆, the junction shows
ohmic behaviour with resistance Rn. (b) Schematic energy diagrams for
different voltage regimes. The quasi-particle density of states ρ relative to
the normal density of states is shown in blue, the barrier is depicted as a
grey bar.
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1 THE JOSEPHSON JUNCTION

E E E

Figure 4: Schematic energy diagrams explaining the non-ohmic behaviour of the I-V
characteristic of a tunnel junction for U � 2∆

e . States below the Fermi
level are coloured in blue, the finite barrier height is indicated. (a) For
zero voltage, the net tunnelling rate vanishes. (b), (c) Free electron states
available to scatter in are framed in red, red areas denote additional free
states.

ii) When the bias current reaches the critical current Ic, the voltage jumps to the
finite value 2∆

e . Here the virtual phase particle runs down the “washboard”
and the continuous change in phase leads to a voltage across the junction.
Cooper pairs break up and the emerging quasi-particles tunnel through the
barrier.

iii) A further increase in bias current leads to ohmic behaviour due to tunnelling
of abundant free electrons.

iv) Reducing the bias current below Ic does not immediately lead to a vanishing
voltage across the junction and a hysteresis opens up. In the “washboard”
analogue this is due to the effect of inertia of the virtual phase particle.
With its kinetic energy from running down the potential, it can overcome the
potential wells appearing when tilting back the “washboard”. The Josephson
junction goes back in the zero voltage state when the bias current reaches
the retrapping current Ire ∝ β

−1/2
c [Tin04]. For a strongly underdamped

Josephson junction, Ire practically vanishes. The current in this domain is
carried by quasi-particles, being not yet recondensed.

1.5 Tunnelling of electrons in a tunnel junction

For bias currents I � Ic, the current through a tunnel junction is not linear in the
applied voltage. According to [Bri70, Sim63, Kai10],

I ∝
ˆ

dEρ(E)ρ(E − eV )P (Ex) [f(E)− f(E − eV )] . (35)

ρ denotes the density of states in the electrodes, f is the usual Fermi distribution
function and P (Ex) is the tunnelling probability in x-direction which is chosen to
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be perpendicular to the barrier plane. P (Ex) can be found using the WKB ap-
proximation [Bri70], giving an approximate solution of the stationary Schrödinger
equation for a quasi-static potential and a barrier thickness d.

P (Ex) ∝ exp
{
−2
~

ˆ d

0
dx′

[
2m

(
Φ(x′, U)− Ex

)]1/2} (36)

Evaluating equation (35) assuming a mean potential barrier height Φ̄ = Φ̄(U),
which is independent of x, gives an approximate equation for the tunnelling current
I called the Simmons model [Sim63]

jS(U) = j0

[
Φ̄ exp

{
−AΦ̄1/2

}
−
(
Φ̄ + eU

)
exp

{
−A

(
Φ̄ + eU

)1/2
}]

, (37)

with j = e
2πh(βd)2 and A = 4πβd

h (2m)1/2. d denotes the barrier thickness and β

is a correction factor which can be set to unity assuming a homogeneous barrier.
Since the barrier height Φ̄ is specified relative to the negatively biased electrode
[Sim63+], only the regime where U < 0 in equation (37) is physically relevant.
A numerical approach modelling the conductance of aluminum tunnel barriers
based on this model is given by Brinkman´s model [Bri70]. It states, that the
current through a tunnel junction is in first order cubic in the applied voltage in
the regime where |U | . 0.2 V. The voltage dependency of the conductivity G(U)
is consequently parabolic

G(U)
G(0) = 1−

(
A0d

16Φ̄3/2

)
eU +

(
9A2

0
128Φ̄

)
(eU)2 , (38)

with A0 = 4d
3~(2m)1/2 and G(0) = 3.16 · 1010 Φ̄1/2

d exp
{
−1.025 · dΦ̄1/2

}
.

The deviation of the I-V characteristic from the ohmic branch arises when the
voltage U across the Josephson junction approaches the mean potential barrier
height Φ̄, and is also due to the increasing normal density of states ρ(E) with
energy

ρ(E) ∝ E1/2. (39)
Qualitatively one could think that according to equation (39), more and more
possible states for electrons to scatter in occur for an increasing voltage. This is
schematically depicted in figure 4.
This effect allows to probe basic properties of a Josephson tunnel junction at room
temperature such as the barrier uniformity or its sheet resistance Rn. Since IcRn =
const. and a function of ∆, as shown in section III.1.2, it is possible to directly infer
the critical current Ic.

2 Basics of the transmon qubit

The state of a qubit as a quantum mechanical two-level system can be any super-
position of the fundamental states |0〉 and |1〉, corresponding to the possible states
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2 BASICS OF THE TRANSMON QUBIT

Figure 5: Schematic representation of the Bloch sphere. The fundamental qubit states
|0〉, |1〉 correspond to the poles of the sphere. Any qubit state |ψ〉 can be
represented in terms of the Euler angles θ, φ and is lying on the surface of
the Bloch sphere.

of a classical bit. It is intuitive to represent the state |ψ〉 of a qubit as the position
on the surface of the Bloch sphere as depicted in figure 5. The states along the axes
x, y and z correspond to the eigenstates of the Pauli spin matrices σ̂i, respectively.

An arbitrary state |ψ〉 on the Bloch sphere can be written as

|ψ〉 = cos θ2 |0〉+ sin θ2e
iφ|1〉 (40)

employing the Euler angles φ and θ [Wen05, Sak68].

Expressing the fundamental states |0〉, |1〉 in terms of the eigenvectors of σ̂z,

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
, (41)

equation (40) yields in vector notation

|ψ〉 =
(

cos θ2
sin θ

2e
iφ

)
. (42)

This framework is used in the following sections to derive an elegant description of
the transmon qubit and its interaction with its environment.
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2.1 Dynamical behaviour of a qubit

The key element to realize a qubit based on superconducting devices is the Joseph-
son junction introduced in section 1. Within the RCSJ model, it can be considered
as a small capacitor being connected in parallel with an inductor. The crucial
point is the non-linearity of the inductance L, which can be manipulated extern-
ally. From an architectural point of view, the Josephson junction can be compared
to a harmonic LC-resonator. However, while a quantum mechanical harmonic os-
cillator has energy levels of equal spacing, the energy levels of a Josephson junction
are non-equidistant. It is this anharmonicity that allows the Josephson junction
to work as a qubit since one can clearly identify the two lowest energy levels to
correspond to the fundamental qubit states |0〉 and |1〉. This distinction would be
impossible for a usual resonator of equidistant level spacing since all transitions
between neighbouring states are degenerate.
A brief overview of the dynamical behaviour of a qubit is given in section 2.1.
Section 2.2 concentrates on the Cooper pair box and gives a mathematical formu-
lation to describe the important mechanisms. Since the transmon design is derived
from that of the Cooper pair box, it is possible to treat the transmon on the same
mathematical footing while considering another limiting case of the characteristic
parameters. This is presented in section 2.3.

2.1 Dynamical behaviour of a qubit

By performing spectroscopy measurements, a qubit can be identified as a func-
tioning device and a rough estimate concerning its coherence behaviour is possible.
Relevant parameters of the qubit such as its resonance frequency or the excitation
frequency are swept and the response on a readout device is registered.
Measurements in the time domain exactly determine the dynamical behaviour of
the qubit, which is mainly characterized by two times T1, T2 [Cla08], in analogy
to the definition in nuclear magnetic resonance (NMR) spectroscopy [Sli90]. Deco-
herence occurs due to the weak coupling of the qubit to its environment.
The relaxation time T1 is the time in which the qubit relaxes from its excited state
|1〉 to its ground state |0〉, corresponding to the Bloch vector going from the south
to the north pole of the Bloch sphere, see figure 5. Spontaneous qubit transitions
under photon emission or absorption constitute the major relaxation mechanism.
T1 is typically measured by exciting the qubit with a π-pulse and measuring its
state after variable times.
The dephasing time T2 is the time after which all information about the phase
between qubit eigenstates of a certain qubit state is destroyed. It arises from
fluctuations in the energy level splitting E01 between the two fundamental qubit
states. Dephasing corresponds to a movement of the Bloch vector in the x − y
plane, relative to its rotation with the Larmor precession frequency. Since all
phase information is lost at the poles of the Bloch sphere, the dephasing time T2
is limited by the relaxation time T1 according to equation (43).

1
T2

= 1
2T1

+ 1
τ

(43)
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2 BASICS OF THE TRANSMON QUBIT

(a) (b)

Figure 6: (a) Circuit diagram of a single Cooper pair box. The gate capacitance Cg
couples the Josephson junction with intrinsic capacitance CJ and kinetic
inductance LJ to the gate electrode of voltage Vg. The superconducting
island is coloured in red. (b) Circuit diagram of a transmon. The additional
shunt capacitance Csh strongly increases the ratio EJ/EC .

τ corresponds to pure dephasing [Cla08]. The dephasing time T2 can be obtained
in a Ramsey experiment [Ram49] or directly from the transition peak broadening
in spectroscopy.
In a so called Rabi experiment [Rab38], decoherence induced by energy relaxation
as well as dephasing is observed.

2.2 The single Cooper pair box

One very interesting type of qubit based on a Josephson junction circuit is the single
Cooper pair box, depicted in figure 6(a). It consists of a small superconducting
island (red) which is connected via a Josephson junction to a large superconducting
reservoir [Nak99, Wen05]. In addition, the island is capacitively coupled via Cg to
a massive gate electrode. A voltage source Vg controls the gate potential and
therefore the offset charge ng on the island.
The energy that is required to place a single charge e on the island at zero voltage
is the charging energy [Cla08]

EC = e2

2CΣ
. (44)

CΣ is the total capacitance of the Cooper pair box

CΣ = Cg + CJ (45)

which is evident considering the equivalent circuit of figure 6(a). For EC large
compared to the Josephson energy EJ and the thermal energy kBT , respectively,
fluctuations of the charge on the island are suppressed [Nak99]. In the normal state,
this corresponds to the Coulomb blockade regime [Gra91, Wen05], where electrons
can only be transferred to the island one by one. kB here denotes Boltzmann´s
constant.
Charging steps on a superconducting island in units of 2e were experimentally first
observed by P. Lafarge et al. [Laf93], operating the Cooper pair box with a charging
energy EC below the superconducting gap ∆.
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2.2 The single Cooper pair box
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Figure 7: Eigenenergies Em with respect to the offset charge ng for different values of
the Cooper pair number n. The first two charge states |0〉 and |1〉, which
are the relevant states for a qubit, are shown in red and blue, respectively.

Due to the weak coupling to its environment, the state of the island can be described
by the macroscopic state |n〉, using the number operator n̂ which counts the number
of additional Cooper pairs on the island with respect to the offset charge ng in units
of Cooper pairs. The two qubit states can then be associated with two adjacent
Cooper pair number states |n〉 and |n+ 1〉 [Cla08, Nak99]. This is why the Cooper
pair box is referred to as a charge qubit.
From figure 6(a), it is straightforward to write down the total energy H of the
system comprising the electrostatic energy stored by the total capacitance CΣ and
the magnetic energy stored in the non-linear inductor formed by the Josephson
junction. Using operators for the Cooper pair number n̂ and the phase difference
δ̂, employing the Josephson potential UJ from equation (28) at zero current γ and
the definition of EC from equation (44) yields

Ĥ = 1
2CΣ

[2e(n̂− ng)]2 + UJ |γ=0= 1
2CΣ

[2e(n̂− ng)]2 − EJ cos δ̂

= 4EC (n̂− ng)2 − EJ cos δ̂. (46)

For a Cooper pair box operating in the charge regime where EJ � EC , the Joseph-
son term can be neglected and the eigenenergies of the Hamiltonian (46) are para-
bolas when plotted against the offset charge ng, see figure 7. At certain values of
the offset charge, neighbouring parabolas intersect and therefore the corresponding
charge eigenstates are degenerate. Switching on a small Josephson coupling as a
perturbation lifts the degeneracy and distinct energy bands form [Wen05], shown
in figure 8(a).
The qubit Hamiltonian in matrix representation is obtained by projecting the
Hamiltonian (46) on the qubit charge states |0〉, |1〉 and using the representation
(41) as well as the definition (17).

Ĥ =
(

0 −EJ
2

−EJ
2 4EC (1− 2ng)

)
(47)

Note that
(
n̂2 − 2n̂ng + n2

g

)
|n〉 = n (1− 2ng) |n〉 omitting a constant. Diagonaliz-

ation of (47) gives the qubit eigenenergies (48) valid close to the degeneracy point
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2 BASICS OF THE TRANSMON QUBIT

ng = 1
2 .

E0/1 = ±1
2

√
(4EC (1− 2ng))2 + E2

J (48)

The level separation at the degeneracy point equals the Josephson energy EJ and
the qubit eigenstates are cat states |0〉 ± |1〉.

2.3 Properties of the transmon qubit

The Cooper pair box presented in the previous section has had its main significance
in demonstrating the isolation of single charges [Dev92] before it was considered
as a charge qubit [Nak99]. Like the other fundamental types of superconducting
qubits, the phase qubit and the flux qubit, it has major drawbacks when it comes
to coherence time, which is the crucial property of a qubit.
A new approach in qubit design is the transmission line shunted plasma oscil-
lation qubit, called transmon [Koc07]. Its architecture is strongly based on the
Cooper pair box, see figure 6. Adding a large shunt capacitance Csh in parallel
to the Josephson junction significantly increases the ratio of Josephson energy EJ
to charging energy EC . Therefore the transmon is operated in the phase regime,
where the phase difference δ across the Josephson junction is the relevant degree
of freedom and consequently the good quantum number to describe the system.
The aim of the transmon design is to maintain the insensitivity of the Cooper
pair box to critical current and flux noise [Koc07] but at the same time also highly
reduce its sensitivity to charge noise, which is the main weakness of the conventional
charge qubit. While strongly increasing the ratio EJ/EC leads to a levelling of the
qubit energy splittings, a sufficiently large anharmonicity of the transmon is to be
preserved.
Due to the lack of qualitative changes in the architecture, the effective Hamiltonian
of the transmon takes the exact form of the Cooper pair box system, see equation
(46)

Ĥ = 4EC (n̂− ng)2 − EJ cos δ̂. (49)

According to figure 6(b), the total capacitance CΣ for calculating the charging
energy EC = e2

2CΣ
is given by

CΣ = Cg + CJ + Csh, (50)

including the shunt capacitance Csh. For large Csh, the charging energy is reduced
and the ratio EJ/EC is increased.
The characteristic properties of the transmon system can be extracted from an
exact solution of the Hamiltonian (49). Following the approach of [Koc07], one can
write the corresponding Schrödinger equation in the phase basis using the operator
equivalence n̂ = −i d

dδ ,[
4EC

(
−i ddδ − ng

)2
− EJ cos δ

]
ψ(δ) = Eψ(δ). (51)
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2.3 Properties of the transmon qubit
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Figure 8: Eigenenergies Em of the transmon Hamiltonian (49) with respect to the
offset charge ng for the lowest three levels m = 0, 1, 2 and for different
ratios EJ/EC . The eigenenergies are normalized to the transition energy
E01 =

√
8EJEC between the ground state and the first excited state and

an offset is subtracted so that E0(0) = 0. (a) Typical EJ/EC ratio for a
conventional charge qubit. Dashed lines mark the sweet spots at half-integer
ng. (d) Typical energy dispersion in the transmon regime. Plots are inspired
by [Koc07].
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2 BASICS OF THE TRANSMON QUBIT

Identifying δ → 2x and introducing g(x) = e−2ingxψ(2x), equation (51) can be
rewritten as

g′′(x) +
(
E

EC
+ EJ
EC

cos(2x)
)
g(x) = 0 (52)

and takes the typical form of Mathieu´s differential equation [Ast64]

y′′(x) + [a− 2q cos(2x)] y = 0. (53)

Due to the periodicity of the wave function ψ(δ + 2π) = ψ(δ), the solution of
equation (52) can be expressed in the Floquet form [Ast64]

g(x) = eiνxP (x) (54)

with P (x) π-periodic in x. Consequently, one can write the first part in brackets
of equation (52), E

EC
, in terms of Mathieu´s characteristic value aν(q) with char-

acteristic exponent ν = −2ng and q = − EJ
2EC

[Wol13], comparing equations (52),
(53). The eigenenergies of the Hamiltonian (49) are therefore given by

Em(ng) = ECa−2ng+km

(
− EJ

2EC

)
. (55)

The integer number km appropriately sorts the eigenvalues [Koc07] to cover a cer-
tain range of ng. Figure 8 shows the eigenenergies Em(ng) of the Hamiltonian (55)
with respect to the offset charge ng and Josephson energy to charging energy ratio
EJ/EC .

The total charge dispersion corresponding to the width of the energy bands and
being a direct measure of the qubit´s charge noise sensitivity, decreases with in-
creasing ratio EJ/EC . In fact, according to [Koc07], the charge dispersion decreases
exponentially with

√
EJ/EC . Therefore, operating the qubit in the phase regime,

where EJ/EC & 50, the qubit is extremely stable with respect to charge noise.

Figure 8(a) shows the typical charge dispersion of a conventional charge qubit. To
avoid the qubit to be strongly sensitive to charge noise, it is biased to one of the
so called “sweet spots” which are the degeneracy points at half-integer ng. Since
the slope of Em vanishes at these sweet spots, linear noise contributions do not
lead to dephasing of the qubit. However it is experimentally very challenging and
sometimes impossible to keep the system exactly at one of these sweet spots.

According to figure 8, when EJ � EC , the charge dispersion flattens out, which
leads to a suppression of charge noise even in higher order. It is not necessary to
bias the system by a gate voltage to a certain point since basically there is a charge
sweet spot everywhere. In addition, the application of an external flux bias is not
necessary. This is the reason why the transmon is called self-biased.

A comparison of the charge noise sensitivity of the transmon being operated at
EJ/EC = 100, with second order charge noise sensitivity ∂2E01

∂n2
g

using the eigenen-
ergies (48) for the charge qubit at EJ/EC = 0.1 yields a relative factor of up to
1010.
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2.3 Properties of the transmon qubit
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Figure 9: Relative anharmonicity αr with respect to the ratio EJ/EC . After passing
a local extremum at EJ/EC ≈ 20, it approaches zero asymptotically for
EJ/EC → ∞. For EJ/EC ≈ 300, the relative anharmonicity is reduced to
approximately 2.5%.

In addition, it can be observed, that the level anharmonicity at the degeneracy
points is decreasing with increasing ratio EJ/EC . The absolute anharmonicity α
can be defined as

α = E12 − E01, (56)
where Eij = Ej − Ei. Normalized to the level spacing E01 of the relevant levels
corresponding to qubit eigenstates |0〉, |1〉, the relative anharmonicity αr is defined
as

αr = α

E01
. (57)

Figure 9 shows the relative anharmonicity αr with respect to the ratio EJ/EC .
Beyond the minimum it obeys a weak power law, asymptotically approaching zero
for EJ/EC →∞.
Finding the charge dispersion to decrease exponentially and the level anharmon-
icity to increase only algebraically with increasing ratio EJ/EC is very convenient.
It allows to design the transmon to be highly insensitive to charge noise while pre-
serving a large enough anharmonicity to operate it as a qubit at the same time.
Typical values for the ratio of Josephson energy to charging energy are in the range
50..400.
In the limit EJ � EC , the eigenenergies of the transmon Hamiltonian can be ap-
proximated using perturbation theory in EC/EJ [Koc07]. Neglecting the charging
energy term in the Hamiltonian (49) and expanding the cosine around zero up to
fourth order in the phase difference δ yields

Ĥ ≈ −EJ + EJ
δ̂2

2 − EJ
δ̂4

24 . (58)

Using the representation of the phase difference δ̂ in terms of bosonic creation and
annihilation operators b̂, b̂† [Koc07] of the transmon system

δ̂ = 1√
2

(8EC
EJ

)1/4 (
b̂+ b̂†

)
(59)
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3 CIRCUIT QED FOR THE TRANSMON QUBIT

and inserting into equation (58) gives

Ĥ ≈ −EJ +
√

8ECEJ
(
b̂†b̂+ 1

2

)
− EC

12 (b̂+ b̂†)4. (60)

Projecting the Hamiltonian (60) on arbitrary qubit states and keeping only terms
that are conserving particle number yields the approximate eigenenergies

Em ≈ −EJ +
√

8ECEJ
(
m+ 1

2

)
− EC

4 (2m2 + 2m+ 1). (61)

Here, the qubit´s resonance frequency ωR = 1
~
√

8ECEJ appears and equals the
Josephson plasma frequency ωP defined in equation (31).
From equation (59), it is clear that ∆δ is small in the limit EJ � EC , confirming
its good nature as a quantum number in the present regime.
With the eigenenergies from equation (61), the absolute and relative anharmonicity
of the transmon take the approximate form

α ≈ −EC , αr = −
√
EC
8EJ

. (62)

3 Circuit QED for the transmon qubit

One of the fundamental processes in nature is the interaction of matter and light
[Wal04]. Thus, for several decades it was the aim of atomic physics and quantum
optics to study the interaction of a single atom with discrete photon modes. This
established the branch of cavity quantum electrodynamics (CQED) [Har06].
With the invention of the first qubits based on superconducting circuits, the rel-
evance of CQED for quantum information processing has been discovered. The
concept of on-chip implementation of a CQED system consisting of a transmis-
sion line resonator and a qubit serving as an artificial atom is also termed circuit
quantum electrodynamics [Wal04, Bla04].
An ideal candidate for performing CQED is the Cooper pair box due to its large
dipole moment ~d [Wal04]. Playing the role of an artificial atom, the Cooper pair
box is coupled to a transmission line resonator. The number of photons being
carried by the resonator corresponds to its discrete energy level. Since the effective
mode volume of the resonator is very small, the electric field ~E is large, and the
strong coupling limit [Bla04], where

~g ∝ ~d · ~E �
[
h

T1
, ~κ

]
(63)

can be reached. g is the coupling constant between resonator and qubit, T1 the
qubit relaxation time and κ the photon loss rate of the resonator.
The reason why CQED plays such an important role in quantum information pro-
cessing is the possibility of controlling the qubit without substantially decreasing
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3.1 Jaynes-Cummings model

the qubit´s lifetime. Under certain conditions, even a quantum non-demolition
measurement of the qubit state is possible. While it is an intrinsic property of a
quantum measurement that the measured quantum state collapses into one of its
eigenstates, a quantum non-demolition measurement means a projection measure-
ment of the qubit state, where the qubit state after the measurement equals the
measurement outcome.
Of course the above considerations hold when the Cooper pair box is operated in
the transmon regime.
In the following, the Jaynes-Cummings Hamiltonian is derived and the relevant
control and readout mechanisms for the qubit on resonance with its readout res-
onator and in the dispersive regime are given. In the end of the section, the
transmon´s coherence times are estimated, regarding the implementation of the
qubit in CQED.

3.1 Jaynes-Cummings model

The Hamiltonian describing the full CQED system is

Ĥ = Ĥres + Ĥq + Ĥint. (64)

Ĥres describes the energy of the transmission line resonator and takes the familiar
form of a harmonic oscillator

Ĥres = ~ωr
(
â†â+ 1

2

)
, (65)

with resonance frequency ωr and bosonic creation and annihilation operators â†, â.
In analogy to other two-level systems such as a spin 1/2, the qubit Hamiltonian
can be written in terms of the Pauli spin matrix σ̂z and the transition frequency
ωq:

Ĥq = ~
2ωqσ̂z (66)

The point of zero energy is set in the middle of the two levels described by the
Hamiltonian (66).
According to [Har06], the interaction Hamiltonian Ĥint is given by

Ĥint = − ~̂d · ~̂E, (67)

with dipole operator d̂ ∝
(
σ̂+ + σ̂−

)
of the qubit and electric field Ê ∝

(
â† + â

)
of the resonator. σ̂± are the atomic ladder operators, bringing the qubit from
the ground state into the excited state or vice versa. Therefore the interaction
Hamiltonian can be written as

Ĥint = ~g
(
σ̂+ + σ̂−

) (
â† + â

)
, (68)

with g being again the coupling constant. Terms corresponding to the excitation of
the qubit and simultaneous creation of a photon σ̂+â†, and the inverse process σ̂â,
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3 CIRCUIT QED FOR THE TRANSMON QUBIT

E

Figure 10: (a) Energy spectrum of the qubit-resonator system. The resonator Fock
state is denoted by |n〉, while the qubit state is either |g〉 or |e〉, meaning
ground and excited state, respectively. The degeneracy of the states of
equation (71) is indicated. Dressed qubit-resonator states are depicted in
blue. (b) Energy spectrum in the dispersive regime. The degeneracy is
lifted by the detuning ∆ and one can see the detuning of the resonator´s
energy levels dependent of the qubit state (blue and red).

can be neglected, as they violate energy conservation [Cri91] and are highly non-
resonant [Har06]. In analogy to a spin 1/2 being subject to an oscillating magnetic
field, the Bloch vector precesses around the z-axis due to the time evolution of the
qubit state |ψ〉, given in equation (40). The Bloch sphere is conveniently considered
in this rotating frame, rotating with the qubit´s Larmor frequency with respect to
the rest system. This is called the rotating wave approximation, valid in case of
the resonator frequency ωr being close to the qubit transition frequency ωq. As
will become clear in section 1, this is indeed the case for the system considered in
this work.
As a result, one can write down the Jaynes-Cummings Hamiltonian

Ĥ = ~ωr
(
â†â+ 1

2

)
+ ~

2ωqσ̂z + ~g
(
σ̂+â+ σ̂−â†

)
. (69)

It is named after E. Jaynes and F. Cummings, who formulated it in a similar form
to apply it to their beam maser [Jay63].
Calculating the energy spectrum of the Hamiltonian (69) gives an understanding
of the remarkable benefits of this qubit-resonator system.
One has to distinguish two different regimes. The crucial parameter is the qubit-
resonator detuning ∆, which is defined as

∆ = ωq − ωr. (70)

3.1.1 Zero detuning

In case of zero detuning ∆ = 0, it is ωq = ωr. The interaction part Ĥint in the
Jaynes-Cummings Hamiltonian (69) can be regarded as a perturbation, since g �
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3.1 Jaynes-Cummings model

ωq, ωr. One can easily verify, that there exist degenerate states of the unperturbed
Hamiltonian, namely

|ψn,g〉 = |n〉 ⊗ |g〉 = |n, g〉
|ψn+1,e〉 = |n+ 1〉 ⊗ |e〉 = |n+ 1, e〉. (71)

Here, n denotes the Fock state of the resonator and |g〉, |e〉 correspond to the qubit
eigenstates |0〉, |1〉, respectively. This notation is chosen to avoid confusion of states
in the two spaces.
In terms of degenerate perturbation theory [Sak68], one has to diagonalize the
full Hamiltonian (69) in the subspace spanned by the degenerate eigenstates (71).
Calculating the matrix elements yields

Ĥ =

 ωr
(
n+ 1

2

)
+ ωq

2 gâ

gâ† ωr
(
n+ 3

2

)
− ωq

2

 (72)

and diagonalization gives the general expression

E±n = ~ωr(n+ 1)± ~
2

√
∆2 + 4g2(n+ 1). (73)

Under the assumption ∆ = 0, equation (73) reduces to

E±n = ~ωr(n+ 1)± ~g
√
n+ 1. (74)

The corresponding dressed eigenstates [Bla04] describing the whole CQED system
are

|n,+〉 = 1√
2

(|n+ 1, e〉+ |n, g〉)

|n,−〉 = 1√
2

(|n+ 1, e〉 − |n, g〉) . (75)

Therefore the degeneracy of the unperturbed Hamiltonian is lifted by switching on
the qubit-resonator interaction. The energy spectrum of the uncoupled resonator-
qubit states and corresponding dressed states are shown in figure 10(a).

3.1.2 Large detuning: The dispersive limit

The aim of CQED applied in quantum computation is coherent control and readout
of the qubit. It has been demonstrated, that this is especially possible when op-
erating a Cooper pair box system in the dispersive limit [Bla04]. In this case, the
qubit-resonator detuning ∆ is large, in particular

g

∆ � 1. (76)

Making a canonical transformation with the transformation matrix [Bla04]

Û = exp
{
g

∆
(
âσ̂+ − â†σ̂−

)}
, (77)
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3 CIRCUIT QED FOR THE TRANSMON QUBIT

Figure 11: Transmission amplitude spectrum of the resonator for large detuning. De-
pendent on the qubit´s state and the sign of ∆, the resonator´s resonance
frequency is increased or decreased by the dispersive shift χ.

one can eliminate the qubit-resonator coupling g in first order and write down an
effective Hamiltonian Ĥeff for the whole system:

Ĥeff = ÛĤÛ †

= ~
[
ωr + g2

∆ σ̂z

]
â†â+ ~

2

[
ωq + g2

∆

]
σ̂z

= ~ [ωr + χσ̂z] â†â+ ~
2 [ωq + χ] σ̂z (78)

To obtain equation (78), terms of the order O
(( g

∆
)2) occurring in the expansions

of the exponential functions are neglected, according to the condition in equation
(76), and constant terms are omitted. In the last step, the dispersive shift χ is
introduced, defined as

χ = g2

∆ . (79)

Hence, when the qubit-resonator system is operated in the dispersive regime, the
effective resonance frequencies of both the qubit and the resonator are shifted by
χ, according to the Hamiltonian (78). Particularly, the resonance frequency of the
resonator depends on the state of the qubit due to the σ̂z operator in equation
(78). Performing a measurement by exciting the resonator with photons induces
a collapse of the qubit superposition state into one of its eigenstates |0〉, |1〉. The
state of the qubit after this measurement equals the measured state with a fidelity
of almost one. This constitutes indeed a quantum non-demolition measurement,
which is crucial to implement fast qubit gate operations.
A typical transmission amplitude spectrum of a resonator dispersively coupled to
a qubit is shown in figure 11.
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3.2 The Purcell effect

It is important to note, that it is possible to infer the superposition state of the
qubit by applying statistics. Preparing the qubit in the same superposition state
and measuring it several times leads to a probability distribution of the qubit
eigenstates. Applying suitable gates before measuring the qubit such as a rotation
moreover allows to restore the phase information of the initial superposition state.
The effective Hamiltonian in equation (78) can be rewritten to highlight the effect
of the resonator on the qubit [Sch07] as

Ĥeff = ~ωrâ†â+ ~
2
[
ωq + 2χâ†â+ χ

]
σ̂z. (80)

In this ordering, the resonance frequency ωr of the resonator seems to be not altered,
while the qubit frequency is additionally shifted by 2χ per photon in the readout
resonator. Since this contribution is dependent on the electric field of the resonator
seen by the qubit, it is called ac-Stark shift, in analogy to atomic physics. In that
framework, the constant dispersive contribution χ can be regarded as vacuum noise
[Sch07] and is therefore called Lamb shift.
The fact that both perspectives coexist and the mutual back-action of the qubit-
resonator system is required, reflects the ultimate principle of a quantum measure-
ment, imposed by Heisenberg´s uncertainty.

It was shown by [Koc07], that these concepts are valid in the transmon regime.
Because of the reduced anharmonicity of the transmon, higher excitations are to
be taken into account. This leads to a slightly modified effective dispersive shift
χeff . χeff reduces to the dispersive shift given in equation (79) for ∆� EC .
In the limit of vanishing anharmonicity, the dispersive shift χ also approaches
zero. However, this effect is compensated for the transmon system by an increased
coupling strength g, which is seen from the definition (79) of χ. The increase in g
originates from the relation [Koc07]

g ∝
(
EJ
EC

)1/4
. (81)

In conclusion, the dispersive shift of the transmon is comparable to that of a con-
ventional Cooper pair box. Therefore, there is no contradiction between strong
coupling and vanishing charge noise sensitivity for the transmon system.
An energy spectrum of the CQED system in the dispersive regime is shown in
figure 10(b).

3.2 The Purcell effect

Among various potential noise channels leading to relaxation of the transmon such
as dielectric losses at surface oxides or quasi-particle tunnelling, the so called Purcell
effect [Pur46] has to be taken into account when designing a CQED circuit.
The Purcell effect describes a modification of the spontaneous emission rate of a
two-level system such as a qubit, when coupled to a resonator or cavity. For the
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4 RESONATOR THEORY APPLIED TO MICROSTRIP GEOMETRY

transmon, operated in the dispersive limit, a Purcell-induced relaxation rate γP
occurs which is given [Koc07] by

γP = κ
g2

∆2 . (82)

κ is the average photon loss rate of the resonator and g, ∆ the coupling constant
and the detuning of transmon and resonator, respectively. The Purcell relaxation
rate in equation (82) leads to an upper bound of the transmon´s relaxation time
T1, given by

TP = 2π
γP
. (83)

4 Resonator theory applied to microstrip geometry

The relevant frequencies for quantum information processing using superconducting
devices are lying in the region of several GHz, corresponding to microwaves. Typical
devices to transmit high-power microwaves with a very high bandwidth and low
loss are coaxial cables [Poz98]. However, when it comes to the implementation of
complex microwave circuits, coaxial cables are too bulky and a planar structure
allowing microwaves to propagate is required [Gup96].
Among more complex geometries, the coplanar waveguide and the microstrip struc-
ture are favoured. In case of the coplanar waveguide, a center strip is surrounded
by a ground plane, leaving a small gap in between. This two-dimensional geo-
metry is structured on a substrate with an optional ground plane added below the
substrate. The electric field lines will partly be in the substrate and above the
structured layer, but mostly focussed in between the center strip and the enclosing
ground plane.
In this work, the qubit system is implemented in microstrip geometry. A detached
strip is structured on top of a substrate with a single ground plane below the
substrate, see figure 12(a) or 15(b). In this case, the electric field lines are located
partly above the substrate in the vacuum region but mostly in the substrate. The
ground plane literally “pulls” the field lines into the substrate. Since the loss
tangent δ in a typical substrate material such as silicon is below 10−6 [Vis10], this
microstrip geometry promises high quality factors and good coherence times for the
qubit. As the distance between center strip and ground plane is large compared to
a coplanar geometry, the electric fields are much smaller. This leads to a reduction
of losses caused by surface or interface defect states.
In the following sections, relevant parameters for a microstrip transmission line are
given and the necessary theory for resonator characterization is presented.

4.1 Relevant parameters for a microstrip transmission line

Figure 12(a) shows a schematic of a microstrip line of widthW and substrate thick-
ness d. The dielectric constant of the substrate is εr, the region above the substrate
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4.1 Relevant parameters for a microstrip transmission line

l

Figure 12: (a) Schematic depiction of a microstrip transmission line of width W . The
substrate thickness is d and its dielectric constant εr. The region above is
vacuum. (b) Equivalent geometry of the microstrip line. All space is homo-
geneously filled with a material of dielectric constant εe. (c) λ

2 -resonator
with voltage (red) and current distribution (blue). There are voltage anti-
nodes and current nodes at the ends of the resonator. n = 1 for the fun-
damental mode. (d) Schematic representation of a transmission line with
characteristic impedance Z0, load impedance ZL and input impedance Zin.
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4 RESONATOR THEORY APPLIED TO MICROSTRIP GEOMETRY

is considered as vacuum. To calculate characteristic parameters of the microstrip
line, it is convenient to specify an effective dielectric constant εe. It can be inter-
preted as the dielectric constant of a homogeneous material fully surrounding the
strip as shown in figure 12(b). According to [Poz98], it is

εe = εr + 1
2 + εr − 1

2
1√

1 + 12d/W
. (84)

Using equation (84), the phase velocity vP in the medium becomes

vP = c
√
εe

(85)

and the modified propagation constant β becomes

β = k
√
εe. (86)

c is the speed of light and k the propagation constant in vacuum, respectively.

4.2 Resonator theory

The resonator employed in this work for the CQED transmon system is a half-
wavelength resonator, or in short notation a λ

2 -resonator. This means, that both
ends of the resonator strip are floating, thus there is no short to ground. Accord-
ingly, there are always voltage anti-nodes at the ends of the resonator, which allows
a capacitive coupling to nearby conductors. For the fundamental mode, the voltage
vanishes in the middle of the λ

2 -resonator. Since the current of the transmission
line is shifted relative to the voltage by π

2 in phase, current nodes appear at the res-
onator´s ends, where inductive coupling is therefore disabled. Figure 12(c) shows
a λ

2 -resonator with qualitative voltage and current distribution.

From the above considerations, it is straightforward to write down the resonance
frequency f of a λ

2 -resonator, using the common relation between frequency f and
wavelength λ and employing the phase velocity from equation (85).

f = vP
λ

= nc

2l√εe
(87)

In equation (87), l denotes the length of the resonator strip, and

l = λ

2n (88)

is used. n is the mode number and it is n = 1 for the fundamental mode.

Each transmission line has a certain characteristic impedance Z0, which is defined
as the ratio of maximum voltage to maximum current according to Ohm´s law.
In general, the transmission line is terminated at one or both of its ends with a
load impedance ZL, being the resistance to ground, see figure 12(d). In case of a
λ
2 -resonator, ZL =∞, since the current at the ends vanishes.
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4.2 Resonator theory

For further analysis, it is expedient to calculate the input impedance Zin, which
is the impedance “seen” by a microwave when looking into the transmission line.
Thus Zin is the effective impedance, originating from the superposition of incident
and reflected wave. According to [Poz98],

Zin = Z0
i tan (βl) (89)

for a λ
2 -resonator. β is the propagation constant from equation (86) and l the

length of the transmission line.

Since Zin needs to diverge if the resonator is resonant, one can write

βl = π

(
1 + ω − ω0

ω0

)
, (90)

introducing the angular frequency ω and the angular resonance frequency ω0. Sub-
stitution into equation (89) yields for ω ≈ ω0

Zin = Z0ω0
iπ (ω − ω0) . (91)

This result can be compared [Gop08] to the impedance Z of an ordinary lumped-
element parallel LC-resonator.

Z =
(
iωC + 1

iωL

)−1
= iωL

1− ω2LC
= iωL

1− ω2

ω2
0

ω≈ω0≈ iωL

2
(
1− ω

ω0

) ≈ 1
2iC (ω − ω0)

(92)
Here the Taylor expansion x2 ≈ 2x−1 around x0 = 1 is performed and the relation

ω0 = 1/
√
LC (93)

is used. Comparing equations (91) and (92) gives

C = 1
2Cl

L = 2
π2Ll. (94)

In these relations, the capacitance and inductance per unit length C, L are intro-
duced. Equations (94) can then be obtained with the relation Z0 =

√
L/C [Gop08].

As a result one can write

Z0 = π

2

√
L

C
. (95)

Similar to equation (93), it is
CL = 1

v2
P

. (96)

The fact that CL is a material constant is plausible since no information about the
length l of the resonator is included in equation (96).
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4 RESONATOR THEORY APPLIED TO MICROSTRIP GEOMETRY

Another important parameter of a resonator is its quality factor Q, defined as
[Poz98]

Q = ω
E

P
, (97)

with resonator angular frequency ω, the average energy stored in the resonator E
and the energy dissipation rate P . Q is a measure of the loss of a resonator and
therefore the lifetime of resonator modes.

The quality factor of the resonator itself is called the unloaded Q, or internal
quality factor Qi. In practice, the resonator is coupled to an external circuit,
which produces additional losses. The total Q of the coupled resonator is called
loaded quality factor QL and can be expressed as

Q−1
L = Q−1

i +Q−1
C . (98)

Q−1
C denotes the loss contribution due to coupling of the resonator to its environ-

ment.

In the following, an expression that links the coupling quality factor QC and the
coupling capacitance C is derived, which is very useful for designing a CQED
system. A similar analysis is done in [Maz04].

Modelling a microwave resonator as a lumped-element parallel LC-resonator, which
is valid close to its resonance, the average energy E stored in the resonator is just
the sum of the energies EC , EL stored in the capacitor Cl and the inductor of the
resonator, respectively. Since half of the total energy is stored in the capacitor and
half is stored in the inductor on average, it is

E = EC + EL = 2 · 1
2Cl〈V

2〉 = 1
2ClV

2
0 . (99)

One factor 1
2 in equation (99) accounts for averaging the voltage square along the

resonator line. The dissipation power P can be obtained by calculating the current
flowing into the load [Maz04] of the resonator. For a resonator being capacitively
coupled only on one end to a load of impedance Z0, it is

P = 〈I2
0 〉Z0 = 1

2ω
2
0C

2V 2
0 Z0. (100)

It is assumed that the absolute value of the coupling impedance is dominated by
the coupling capacitor.

Inserting into equation (97) yields for ω ≈ ω0

QC = ω0Cl

Z0 (ω0C)2 =
√
Cl/L

Z0 (ω0C)2 = l

vPZresZ0 (ω0C)2 = π

ZresZ0 (ω0C)2 , (101)

using equations (93), (96) and denoting the characteristic resonator impedance
with Zres. Equation (101) holds for a λ

2 -wavelength resonator.
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network

VNA1 2

Figure 13: Typical measurement setup of a two-port network using a vector network
analyzer (VNA), with microwaves being applied at port 1. Incident and
originating voltage amplitudes V ±

i as well as the corresponding scattering
matrix elements are depicted.

4.3 Resonator characterization using the scattering matrix

A very convenient representation for the characterization of multi-port networks is
given by the scattering matrix

=
S. In contrast to an impedance matrix approach,

where voltages and currents at the ports are considered, incident and reflected
voltage waves on the ports of a network are related [Poz98]. For this reason, the
scattering matrix representation is closely linked to direct measurements of a multi-
port network, for instance with a vector network analyzer (VNA).

For the usual case of a two-port network,

(
V −1
V −2

)
=
(
S11 S12
S21 S22

)(
V +

1
V +

2

)
, (102)

with V +
i the voltage amplitude of an incident wave on port i and V −i the voltage

amplitude of a wave originating from port i. Since the amplitudes V ±i are com-
plex values in general, both amplitude and phase information is contained in the
scattering description.

The characterization of a notch-type resonator is carried out using a feedline to
which the resonator is coupled. The ends of the feedline may be ports 1, 2 of the
network. For a typical measurement, a VNA is connected in such a way, that a
wave is applied at port 1. For no wave being applied at port 2, equation (102)
reduces to (

V −1
V −2

)
=
(
S11V

+
1

S21V
+

1

)
. (103)

Now one can measure either the reflection of the wave back to port 1, S11, or the
transmitted wave signal to port 2, S21. Figure 13 shows a typical measurement
setup of a two-port network using a VNA for this scenario.

In the present work, a transmission line resonator is coupled to a feedline, which is
connected to a VNA. The feedline can be regarded as a transmission line as well.
Its characteristic impedance is 50 Ω, equal to the impedance of the coaxial cables
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Figure 14: Typical transmission amplitude spectrum |S21| of a notch-type resonator
capacitively coupled to a feedline. The loaded quality factor QL is calcu-
lated from the bandwidth at

√
2 times or 3 dB below the baseline of unity

transmission, corresponding to 0 dB. The internal quality factor Qi is cal-
culated from the bandwidth at

√
2 times or 3 dB above the minimum of

the dip.

connected, to avoid wave reflections at the ends of the feedline due to an impedance
mismatch. The resonator is characterized by measuring reflection or transmission
of microwaves at the feedline.

Measuring the transmission amplitude spectrum |S21| of such a notch-type reson-
ator, a dip occurs at its resonance frequency. This is due to photon modes being
excited in the resonator and reradiated into the feedline. Since these waves ori-
ginating from the resonator are travelling in both directions of the feedline, the
transmitted signal is attenuated. Modes of other frequencies than the resonance
frequency do not couple to the resonator and are fully transmitted. In this respect,
the configuration works as a notch filter.

The width of the observed dip corresponds to the quality factor Q of the respective
resonator. According to [Poz98], the internal quality factor Qi and the loaded
quality factor QL can be measured at

√
2 times above the minimum of S21 and

√
2

times below the baseline corresponding to unity transmission, respectively. Figure
14 shows a typical transmission spectrum of a notch-type resonator.
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Chapter III Experiment

1 Design and simulation of the transmon CQED sys-
tem

The transmon CQED system investigated in this work is schematically depicted
in figure 15(a). As mentioned in section II.4, the device is designed in microstrip
geometry. All components are essentially located in two dimensions, which is the
plane just above the substrate. Since a crucial part of electric field lines penetrates
the bulk substrate, this geometry is sometimes called “2.5 dimensional”.

The substrate material employed is intrinsic silicon due to its large internal quality
factor Qi > 106 [Vis10]. The reason is the small concentration of two-level systems
in the dielectric, which is the main limitation of Qi. For the structured metal layer
as well as the ground plane below the substrate, aluminum is used. It is known
to be highly performant when it comes to high Qi resonators [Wan09], promising
increased coherence times of the qubit. A schematic chip profile is shown in figure
15(b).

To avoid an impedance mismatch at the ends of the feedline, its impedance is
designed to be close to 50 Ω, which is the wave impedance of the connected coaxial
cables. The appropriate width W can be calculated according to [Poz98] as

W = d
8eA

e2A − 2 , A = Z0
60 Ω

√
εr + 1

2 + εr − 1
εr + 1

(
0.23 + 0.11

εr

)
, (104)

with d the substrate thickness, Z0 the given characteristic impedance of 50 Ω and
εr the dielectric constant of the substrate. For d = (350± 5)µm and εr = 11± 0.2
for silicon, equation (104) yields W = (305 ± 7)µm, assuming a Gaussian error
propagation. The effective dielectric constant εe for the parameters given in figure
15 is according to equation (84)

εe = 6.24. (105)

In the present design, a λ
2 -resonator is capacitively coupled to the feedline via the

capacitance Cin.
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Al

Si

transmon
with split JJ

feedline

capacitor pads

-resonator

(a)

(c)

Si Al

(b)

Figure 15: (a) Schematic of the transmon CQED system investigated in this work.
Feedline and readout resonator are shown in red, the transmon with its
capacitor pads in blue. Josephson junctions are depicted as yellow crosses.
(b) Chip profile. The structured layer on top as well as the ground plane
below the silicon substrate is patterned with aluminum. (c) Equivalent
circuit diagram. The feedline is identified with a gate voltage Vg and the
resonator with a lumped-element LC-resonator. An external flux loop for
tuning the transmon is depicted as well.
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1.1 Design parameters of the readout resonators

The large shunt capacitance of the transmon is realized by two adjacent pads. This
configuration can be mapped to a parallel plate capacitor with a mutual capacitance
that partly features the shunt capacitance Csh. The dominant contribution however
arises from the capacitive coupling of the two pads to the ground plane and therefore
to each other by means of the electric field. The large size and spacing of the
capacitor pads reduce the surface loss contribution by reducing the electric field
strength at the surface.
The capacitor pads are connected by two Josephson junctions depicted as yellow
crosses in figure 15(a). This so called split Josephson junction setup corresponding
to a dc-SQUID allows the transmon to be tunable in its resonance frequency via
external flux.
The transmon as a whole likewise couples to the resonator via the gate capacitance
Cg.
An equivalent circuit diagram of the CQED system is depicted in figure 15(c). The
feedline is identified with a gate voltage Vg and the λ

2 -resonator is approximated by
a lumped-element parallel LC-oscillator. The external magnetic flux Φext induces
a current in the dc-SQUID loop and alters the effective critical current of the split
Josephson junction.
Since the London penetration depth λL of aluminum is roughly in the range of the
thickness of the ground plane of the chip, concerns regarding a possible magnetic
screening by the backplane are dispelled.
The behaviour of the transmon CQED system depends strongly on the chosen
design and fabrication parameters. In the following, design parameters to operate
the transmon in the desired regime together with chip simulations to determine
the relevant frequencies and quality factors are given. The simulations are mainly
performed with Sonnet [Son11], which is a simulation software for high frequency
circuits.

1.1 Design parameters of the readout resonators

Figure 16(a) shows a micrograph of the transmon chip prepared in this work with
an edge length of 5 mm. It comprises the feedline traversing the chip in the middle
and four pairs of readout resonators with associated transmon.
While each transmon on the chip is identical, the resonators are mutually detuned
with resonance frequencies in the range from 6 GHz to 9 GHz. This allows to choose
the readout resonator most suitable for a certain measurement.
According to Sonnet simulations, the resonance frequencies turn out to be higher
than expected from equation (87). The reason is the meander geometry of the
resonators that leads to partial cancellation mainly of the inductance of the reson-
ators´ striplines.
The simulated reflection amplitude spectrum is given in figure 17(a).
The loaded quality factors QL of the resonators are calculated according to figure
14 from the dips in the simulated transmission amplitude |S21|, shown exemplarily
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1 DESIGN AND SIMULATION OF THE TRANSMON CQED SYSTEM

Figure 16: Micrograph of the transmon CQED system prepared and investigated in
this work. (a) Whole chip with feedline traversing in the middle and four
pairs of transmon qubits with associated readout resonator. (b) Enlarged
section of the chip showing the 7 GHz resonator with transmon qubit. (c)
Optical image of a split Josephson junction with an inner area of 120µm2.
Bottom layer (yellow) and top layer (pink) are coloured. (d) Detailed
scanning electron microscope (SEM) image of a Josephson junction (S.
Meißner). Bright spots on the bottom electrode can be ascribed to a con-
tamination during the stripping process.
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Figure 17: (a) Simulated reflection amplitude |S11| of the readout resonators. The
quality factors QL given in table 1 are calculated from the respective trans-
mission spectra due to a defined base line. (b) Enlarged view of the trans-
mission amplitude |S21| of the 9 GHz resonator.

Table 1: Resonance frequencies f0 and loaded quality factors QL of the readout res-
onators according to a simulation of the transmission amplitude spectrum
|S21|. QL is determined according to figure 14.

resonator f0 (GHz) QL
(
103)

1 6.01 5.5
2 7.04 5.0
3 7.88 5.3
4 9.18 5.1

in figure 17(b). The target value is QL = 5000. Table 1 gives an overview of
the simulated resonance frequencies and the loaded quality factors QL of the four
readout resonators. To achieve an equal coupling for all resonators, the distance
of the coupler to the feedline needs to be adjusted due to the varying maximum
voltage in the coupler for different resonator lengths.

Since the internal loss of the resonators vanishes under ideal conditions that are
assumed in the simulation, Qi → ∞ and QL = QC according to equation (98).
Therefore QL is a direct measure of the coupling between feedline and resonator.

The resonator width is Wres = 10µm. Employing the inverse of equation (104)
[Poz98], the off-resonance characteristic impedance Zres of the resonators is

Zres = (135± 3) Ω. (106)

Using equation (96) and Zres =
√
L/C, the capacitance C and inductance L per

unit length of the resonators can be calculated. Equations (93) and (95) give the
capacitance C and the inductance L of the resonators when identified with lumped-
element LC-resonators for a certain resonance frequency f0. The parameters for
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1 DESIGN AND SIMULATION OF THE TRANSMON CQED SYSTEM

the 8 GHz resonator are

C = 231 fF,
L = 1.7 nH. (107)

1.2 Design parameters of the transmon

The properties of the transmon are strongly dependent on the parameters of the
employed Josephson junctions.

For a target Josephson junction area of A = 0.5µm2, the intrinsic capacitance Cint
of a single Josephson junction is

Cint = 25 fF, (108)

assuming a specific capacitance of 50 fF
µm2 for AlOx, which is the utilised material of

the tunnelling barrier. The resistance-area product RnA, which is a characteristic
parameter of the oxide barrier, has to be

RnA = 2000 Ωµm2. (109)

With the relation from Ambegaokar and Baratoff [Amb63, Tin04] for the IcRn-
product of tunnel junctions,

IcRn = π∆
2e tanh

( ∆
2kBT

)
, (110)

the critical current Ic of the Josephson junction can be calculated to be

Ic = 65 nA. (111)

In equation (110), Rn = RnA/A is the sheet resistance of the Josephson junction,
∆ is the superconducting gap of aluminum and T is the measuring temperature,
which is assumed to be 15 mK.

According to equation (33), the inductance LJ of the split Josephson junction for
vanishing external flux is

LJ = 2.5 nH. (112)

To simulate the transmon with Sonnet, the split Josephson junction needs to be
substituted by an ideal capacitance CJ = 2Cint together with an ideal inductance
LJ with the values from equations (108) and (112), respectively.

To work out the transmon frequency fT , its readout resonator is regarded as a feed-
line with the transmon as lumped-element LC-resonator being capacitively coupled
to. The ports at the ends of the feedline are grounded by a load corresponding to
the resonator´s characteristic impedance Zres given in equation (106). Measuring
the transmission amplitude spectrum |S21| yields the transmon frequency fT as
well as the loaded quality factor QL,q of the transmon. Analogously, QL,q gives the
coupling QC,q between resonator and transmon.
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Figure 18: (a) Geometry used for simulating the transmon frequency fT and its coup-
ling QC to the resonator with colours indicating the current distribution.
As the current vanishes on the capacitor pads, inductive coupling between
resonator and transmon for this simulation can be excluded. (b) Transmis-
sion amplitude |S21| of the geometry shown in (a). The simulated transmon
frequency is fT = 9.37 GHz and the loaded quality factor is QL = 10.4 ·103.
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1 DESIGN AND SIMULATION OF THE TRANSMON CQED SYSTEM

Figure 18(a) shows the simulated current distribution on the resonator and the
transmon. Since the current is zero on the capacitor pads, inductive coupling can
be excluded and the measured QL,q directly translates into the gate capacitance
Cg.
The transmission amplitude shown in figure 18(b) indicates a transmon frequency
of

fT ≈ 9.37 GHz (113)
and a loaded quality factor for the transmon of

QL,q ≈ 104. (114)

Assuming that the inductance of the split Josephson junction LJ is large compared
to the inductance of the capacitor pads, the total transmon capacitance CΣ can be
calculated using equation (93):

CΣ = 115 fF (115)

Inserting the parameters from equations (112), (115) into equations (22), (44),
the Josephson energy EJ and charging energy EC as well as their ratio can be
calculated to be

EJ = 0.27 meV
EC = 0.70µeV

EJ/EC = 386. (116)

1.3 The split Josephson junction

Since the transmon in the current design employs two Josephson junctions, the ef-
fective critical current Ic,eff of this split Josephson junction is the relevant quantity.
With zero external magnetic flux applied, it is Ic,eff = 2Ic.
According to figure 19(a) and the Josephson equation (20), the total current flowing
through a symmetric split Josephson junction is

Itot = I1 + I2 = Ic (sin δ1 + sin δ2) = 2Ic cos
(
δ1 − δ2

2

)
sin
(
δ1 + δ2

2

)
. (117)

Integration around the loop formed by the two Josephson junctions while taking
into account the direction of the currents yields the applied external magnetic flux
Φext due to flux conservation shown in section I.1.1.

δ1 + (−δ2) = 2πΦext

Φ0
(118)

Inserting equation (118) into equation (117) gives the maximum effective critical
current of the split Josephson junction Ic,eff dependent on external magnetic flux
Φext:

Ic,eff = 2Ic cos
(
π

Φext

Φ0

)
(119)
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Figure 19: (a) Split Josephson junction with total current Itot. While integrating
around the loop indicated in red, the phase jumps δi at the Josephson
junctions need to sum up to the overall phase of the loop evoked by the
external flux Φext. (b) Dependence of the transmon frequency fT on the
externally applied flux Φext, normalized to the flux quantum Φ0. By indu-
cing integer multiples of Φ0

2 in the loop, the qubit frequency ideally vanishes
for a symmetric split Josephson junction (blue). An asymmetry of the split
Josephson junction by 15% leads to a reduced tuning range, shown in red.

The tunability of the transmon´s resonance frequency fT by applying an external
magnetic flux Φext is depicted in figure 19(b). Since fT has its maximum for vanish-
ing Φext, the resonance frequency of the transmon is designed to be slightly above
the resonances of the readout resonators. This allows to operate the transmon
in the dispersive regime for large detuning as well as to observe an avoided level
crossing when sweeping the transmon on resonance with its readout resonator.

In the case where the split Josephson junction is asymmetric, the total current Itot
takes the form

Itot = Ic,1 sin δ1 + Ic,2 sin δ2

= Ic,1 sin δ1 + Ic,1 sin δ2 − Ic,1 sin δ2 + Ic,2 sin δ1 − Ic,2 sin δ1

+Ic,2 sin δ2 + Ic,1 sin δ1 + Ic,2 sin δ2 − Itot

= 2 (Ic,1 + Ic,2) cos
(
π

Φext

Φ0

)
sin δ

+2 (Ic,2 − Ic,1) cos δ sin
(
π

Φext

Φ0

)
− Itot. (120)

Solving for Itot yields

Itot = Ic,Σ

[
cos

(
π

Φext

Φ0

)
sin δ + d cos δ sin

(
π

Φext

Φ0

)]
= Ic,Σ cos

(
π

Φext

Φ0

)[
sin δ + d cos δ tan

(
π

Φext

Φ0

)]
, (121)

where Ic,Σ = Ic,1 + Ic,2, δ = 1
2 (δ1 + δ2) and d = Ic,2−Ic,1

Ic,Σ
, being the asymmetry

parameter.
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1 DESIGN AND SIMULATION OF THE TRANSMON CQED SYSTEM

Applying cosine´s addition theorem to isolate the phase δ in a factor that can be
eliminated afterwards [Koc07] gives

Ic,eff = 2Ic cos
(
π

Φext

Φ0

)√
1 + d2 tan2

(
π

Φext

Φ0

)
, (122)

with Ic,Σ ≈ 2Ic.

Due to the correction term in equation (122), which becomes unity for a symmetric
split Josephson junction with d = 0, the transmon frequency cannot be tuned to
zero frequency, which is shown in figure 19(b) in red.

The designed inner area of the split Josephson junction is 120µm2.

1.4 Design parameters of the CQED system

According to [Koc07], the coupling constant g between resonator and transmon can
be expressed as

gij = 2βe
~
Vrms〈i|n̂|j〉 (123)

with i, j being transmon states. The relevant quantity to insert in equation (69)
is g01, corresponding to the transition between the transmon eigenstates |0〉, |1〉.
Expressing the number operator n̂ in terms of qubit creation and annihilation
operators yields

g01 =
√

2βeVrms
~

√
EJ

8EC
. (124)

Vrms is the root-mean-square voltage of the resonator corresponding to its vacuum
fluctuations. It can be extracted by equating the energy stored in the capacitor
of the resonator 1

2CresV
2 = CresV

2
rms and the vacuum fluctuation of a harmonic

oscillator 1
2~ωres. One obtains

Vrms =
√

~ωres
2Cres

. (125)

β in equation (123) is defined as
β = Cg

CΣ
(126)

with Cg the gate capacitance and CΣ to total transmon capacitance. The gate
capacitance Cg can be calculated using equation (101) and QL,q from equation
(114) to be

Cg = 2.1 fF. (127)

Putting things together, equation (124) yields for the 8 GHz resonator

g01 = 149 MHz. (128)
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The effective dispersive shift χeff can be calculated according to [Koc07] as

χeff = − (βeVrms)2
√

EJ
2EC

EC
~∆(~∆− EC) (129)

which gives
χeff = 2.34 MHz. (130)

The effective loss tangent δ of the transmon with split Josephson junction is ap-
proximately

δ = 2Cint
CΣ

δAlOx +
(

1− 2Cint
CΣ

)
δAl ≈

2Cint
CΣ

δAlOx , (131)

assuming δAl � δAlOx ≈ 3 ·10−3 [Pai10]. The relaxation time T1 of the investigated
transmon is estimated to be

T1 ≈
1
δ fT

= CΣ
2CintδAlOxfT

≈ 0.1µs. (132)

For the single junction version of the transmon, a relaxation time up to 0.3µs
is expected due to the smaller effective junction area and no magnetic flux noise
sensitivity.

The upper bound TP1 of the transmon´s relaxation time given rise by the Purcell
effect can be estimated using equation (83) to be

TP1 = 53µs (133)

which does not constitute a limitation in the present case.

Using equation (61) for the eigenenergies Em of the transmon Hamiltonian, the
anharmonicity α of the transmon system defined in equation (56) can be calculated
to be

α = 169 MHz. (134)

According to equation (57), this corresponds to a relative anharmonicity of

αr ≈ 1.8 %. (135)

Since α � 1/T2 ≈ 1/T1, which roughly corresponds to the excitation peak broad-
ening, this is sufficient to distinguish the fundamental transmon transition from
higher level excitations.

2 Sample fabrication

All samples investigated in this work are fabricated at the Karlsruhe Institute of
Technology. The only metal employed for the samples, including the electrodes of
the Josephson junctions, is aluminum which is deposited using the sputter depos-
ition tool “Plasma 1” of the Physikalisches Institut. Structuring of the metal layers
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2 SAMPLE FABRICATION
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Figure 20: Schematic of the magnetron sputter deposition tool employed for sample
preparation. The loadlock is shown on the left, where sputter cleaning and
oxidation take place. The additional top ground plane inserted to improve
the cleaning process is depicted in blue. The main chamber is shown on
the right, with sampleholder (grey) and target (blue). The substrate is
depicted in red and the chambers are separated by a gate valve.

is performed by optical lithography in the cleanroom of the Center for Functional
Nanostructures (CFN).
The crucial and also most challenging part in fabricating a qubit based on su-
perconducting devices is the preparation of Josephson junctions. To figure out
fabrication procedures and parameters as well as to characterize the Josephson
junctions used for the transmon investigated in this work, samples comprising only
Josephson junctions of different size and design were prepared.
Since fabricating the transmon samples does not require any technological advance-
ment relative to fabricating Josephson junctions only, the following sections focus
on Josephson junction preparation.

2.1 Sputter deposition and argon cleaning

A schematic of the magnetron sputter deposition tool employed for sample prepar-
ation is depicted in figure 20.
Metal deposition takes place in the main chamber. In general, the previously
evacuated chamber is filled with argon gas up to 0.1 mbar and a high negative
dc-voltage is applied at the metal target, also called gun. Due to the high electric
field between substrate and target, the argon atoms are spontaneously ionized and
therefore a plasma is ignited. The positively charged ions are accelerated onto the
target and ballistically scatter with the metal atoms. These sputter atoms leave
the target and are partly deposited on the substrate.
In magnetron sputtering, a magnetic field is applied parallel to the target´s surface
[Was04]. This leads to a trapping of electrons in the glow discharge region of
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2.1 Sputter deposition and argon cleaning

the plasma which in turn increases the collision rate between electrons and argon
atoms. Due to this increased ionisation rate, the sputtering pressure can be lowered
down to typically 10−3 mbar which reduces the scattering probability of the sputter
atoms while travelling to the substrate. This results in a highly increased deposition
rate. Since the scattering angle between incident argon ion and scattered atom is
predictable, the deposition rate is further increased by means of the magnetic field
due to a focusing of the argon ions from a certain angle.
The aluminum deposition rate for the extended gun was determined to be about
0.4 nm

s , with a sputter power of 300 W and a dynamically pumped chamber pressure
during deposition of 1.3 · 10−3 mbar. The chamber background pressure is 3 ·
10−8 mbar.
The left part in figure 20 shows the loadlock of the sputter deposition tool where
the RF-sputter clean process takes place. As the term suggests, it can be regarded
as an opposite sputtering process.
As depicted in figure 20, the sample and sampleholder are connected to a high
ac-voltage of 13.56 MHz after filling the loadlock chamber with argon gas. This
again leads to ionisation and an acceleration of the argon ions which scatter with
metal atoms on the sample. Due to the momentum transfer, they leave the sample
and the result is an erosion of the sample´s metal layer corresponding to an etching
process.
There are two major challenges one has to deal with during this process. First
of all, redeposition on the sample of eroded material as well as material from the
chamber walls, the copper stamp and the substrate holder has to be avoided. While
this is achieved by ensuring a high net cleaning rate, one can get rid of oxygen or
hydrogen traces by an increased pumping power while maintaining the chamber
pressure. A second challenge is to focus the argon plasma to the region where the
sample is located. Otherwise particle erosion taking place elsewhere can ultimately
lead to a net deposition rate on the substrate.
In the course of optimizing parameters, the sputter clean rate was measured to be
marginal and a substantial amount of material was redeposited inhomogeneously
on the substrate. A first reason for that was a stainless steel shield beneath the
substrate stamp that magnetised progressively over time and thus redirected the
plasma away from the sample. The key improvement of the cleaning rate was
induced by a ground plane with a diameter of 13 cm which was inserted about 5 cm
above the sampleholder. Before, the chamber walls were the only ground reference
for the plasma. Since they were nearest below the sampleholder, the plasma was
mainly located there. The close ground plane above the sample now focuses the
plasma just on top of the sampleholder and largely increases its homogeneity. In
addition, no metal redeposition is observed or measured after the modification.
The enhanced cleaning rate Rc ≈ 3.3 nm/min due to the increased effective area
AG of the ground plane accords with the relation

Rc ∝
(
AG
As

)4
(136)

from [Ohr02], with As being the area of the sampleholder.
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Figure 21: Schematic representation of the positive optical lithography process used
for structuring the samples. The photoresist (blue) is applied and struc-
tured on top of the deposited aluminum film. Exposed regions (green)
are developed and the aluminum is removed at regions not protected by
the photoresist in a subsequent etching process. Finally, the photoresist is
stripped.

Since the sample is heated up to about 80°C during continuous cleaning in spite of
water cooling, regular pauses are necessary to avoid a crystal structure degrading.
In addition, such high sample temperatures would have a severe influence on the
subsequent oxidation process. For this purpose, the cleaning process is automated
by the implementation of software control including monitoring the reflected power
of the RF source. In a further step, continuous pressure readout and logging for
loadlock and main chamber are implemented to enable process reproducibility.

Exact sputter deposition and cleaning parameters are given in appendix A.2.

2.2 Optical lithography

The optical lithography process used to structure the deposited aluminum films is
schematically depicted in figure 21.

The employed photoresist is AZ5214E, which is applied on top of the aluminum
film in a two-step process using the spin coater. In the first step, the whole chip is
covered homogeneously with a low spinning frequency of 500 1

min , while the thick-
ness of the photoresist is adjusted in a second step with higher frequency. The
desired thickness of about 1µm corresponds to a spinning frequency of 6000 1

min
for 60 s. Remaining solvents in the applied photoresist are removed in a subsequent
softbake step that also further increases the mechanical stability [Mic12].

The actual structuring is done using a chrome photomask which is written with dir-
ect write laser lithography (DWL). The photo mask is aligned above the substrate
with a mask aligner from Carl Süss and brought in direct contact with the sub-
strate. During the exposure process with ultra violet light in the range of 400 nm,
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2.3 Josephson junction fabrication using the cross junction technique

(a) (b) (c)

overlap area

Figure 22: Principle sketch of the Josephson junction fabrication process using the
cross junction technique. The first aluminum layer (blue) is structured and
oxidized in a controlled way before patterning a second tip (red) on top,
rotated by 90°.

intermolecular bonds in the photoactive compound are destroyed and exposed re-
gions become soluble in the subsequent development step. Development is carried
out with MIF726.

This process is called positive lithography, since direct mask reproduction on the
photoresist takes place.

The structure in the photoresist layer is imaged to the aluminum film below in
a dry etching process employing an inductively coupled plasma (ICP), which is a
form of reactive ion etching (RIE). The process uses argon for physical ballistic
etching as well as a small admixture of chlorine to avoid the formation of edge
spikes.

In a final stripping process, the resist is removed from the sample.

Exact lithography parameters used for sample fabrication are given in appendices
A.3 to A.6.

2.3 Josephson junction fabrication using the cross junction tech-
nique

The utilised substrate material is ultra-pure intrinsic double-side polished silicon
with a thickness of 350µm. To obtain the geometry shown in figure 1(a), the cross
junction technique depicted in figure 22 is used.

In this two-step process, a first aluminum layer is prepared as a thin bar with a
width of about 0.7µm. Since structuring is carried out ex-situ, an oxide layer is
formed at the surface of the aluminum film. This native oxide is removed in a
cleaning step described in section 2.1 and the aluminum film is reoxidized in a
controlled way. This layer of aluminum oxide with a thickness of about 2 nm forms
the dielectric of the Josephson junction.

Subsequently, another aluminum layer is sputtered on top in-situ, structured as a
finger rotated by 90°. The resulting overlap region of the aluminum layers is the
Josephson junction area with an objective size of 0.5µm2.

The structuring of the aluminum layers is carried out in the way described in section
2.2.
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3 EXPERIMENTAL SETUP

To guarantee a proper contact between the two aluminum films and to avoid a
disconnection of the second layer due to steep edges in the first layer, a positive
edge profile in the first aluminum film needs to be assured. This can be achieved
in a positive lithography process combined with etching as described above or by
negative lithography combined with a lift-off process. The latter was used in the
beginning, but the former is favoured now since a better resolution is achieved and
the pre-structured photoresist is excluded as a source of contamination during the
cleaning process.
The sputter clean step before depositing the second aluminum layer turned out
to be one of the major obstacles in fabricating a good Josephson junction. Since
it is crucial that the interface between electrode and dielectric of the Josephson
junction is free from other substances such as copper, semiconducting materials or
polymers, a substantial cleaning rate as well as a minimum of material redeposition
during the cleaning process needs to be guaranteed.
Several micrographs of the fabricated Josephson junctions are shown in figure 16.

3 Experimental setup

Transport characterization of the prepared Josephson junctions is carried out using
a dc-setup to measure current-voltage characteristics (I-V characteristics). This is
done at room temperature with the probe station as well as at cryogenic temper-
atures using a 3He refrigerator. The dc-setup is described in section 3.1.1, section
3.1.2 gives an overview of the functional principle of the utilized 3He refrigerator.
Qubit measurements are performed in a dilution refrigerator whereby base temper-
atures of about 20 mK are reached. Its operation principle is briefly explained in
section 3.2.1. Section 3.2.2 describes the microwave setup and experimental wiring
and an overview of mounted samples in the cryostat is given in section 3.2.3.

3.1 Josephson junction transport characterization

3.1.1 Dc-setup

Figure 23 shows a schematic of the employed dc-setup for Josephson junction trans-
port characterization. To obtain an I-V characteristic, the current through the
Josephson junction is swept by combining a voltage generator (G) and a current
source (CS). The amplified (Amp) voltage across the Josephson junction as well as
the voltage corresponding to the driving current are plotted with an oscilloscope
in xy-mode. This data is recorded with a computer using GoldExI [Gol97].
The setup corresponds to a four-point measurement with respect to cable res-
istances connected to the sample. Under room temperature conditions, the lead
resistance in the structured sample is added to the measured total resistance as
a series resistance. If the sample is cooled so that the aluminum film gets super-
conducting, the lead resistance vanishes and one ends up with an ideal four-point
measurement of the tunnel junction.
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3.1 Josephson junction transport characterization
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Figure 23: Schematic circuit diagram of the dc-setup employed for Josephson junction
transport characterization. A voltage generator (G) generates a triangu-
lar voltage which is transformed to a current (CS). The amplified (Amp)
voltage across the Josephson junction is plotted against the current sweep
on an oscilloscope. A variable shunt resistor connecting the output lines of
the current source is depicted.

To contact the tunnel junction pads at room temperature, the probe station is
used, providing a fast and easy way to measure the critical current Ic and observe
the typical non-ohmic behaviour of the I-V characteristic.
At cryogenic temperatures, the measurement electronics shown in figure 23 is con-
nected to dc-lines of the employed dipstick, which are in turn wire bonded to the
sample. To reduce noise in the measurement signal, all dc-lines in the dipstick
are low-pass filtered by means of a simple RC network with a cut-off frequency of
about 15 kHz.

3.1.2 3He refrigerator

To observe the effect of Josephson tunnelling, the investigated sample needs to be
cooled below its critical temperature for superconductivity. For bulk aluminum,
this is achieved with temperatures below 1 K.
Figure 24 shows the dipstick of a typical 3He refrigerator used in this work for
transport measurements of the prepared Josephson junctions.
The sample to be cooled is mounted close to the 3He pot to guarantee good thermal
contact. A cryoperm shield is attached to protect the sample against electromag-
netic and thermal radiation. In addition, the dipstick is hosted in an internal
vacuum chamber (IVC) which is framed by a copper cylinder. The dipstick is
mounted in a bath of liquid helium.
While cooling down the cryostat, the sorption pump stage is kept at about 45 K
by heating while the 1K pot is pumped to reduce the vapour pressure of the 4He
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Figure 24: Typical dipstick of a 3He refrigerator.
One can see the different temperat-
ure stages. When the cryostat is at
base temperature, the sorption pump
stage has a temperature of about 3 K
and the 1K pot roughly 1 K. 3He
condenses in the 3He pot and its va-
pour pressure is reduced by pumping
down to about 0.26 K. Pumping is per-
formed with the capillary at the end of
the dipstick which is immersed into li-
quid 4He. All stages are located inside
the internal vacuum chamber (IVC).
In order to perform dc-measurements,
the dipstick is equipped with several
filtered dc-lines.

inside. By that, the boiling temperature of 4He drops from 4.2 K to about 1.7 K.
At these temperatures, all the 3He inside a closed system of the cryostat condenses
into the 3He pot.

In a subsequent step, the heating of the sorption pump is switched off which leads to
a cooling to about 3 K. By pumping at the 3He pot, its vapour pressure is reduced,
leading to a decrease in boiling temperature down to the base temperature of the
cryostat of about 0.26 K.

3.2 Qubit measurements

3.2.1 Dilution refrigerator

Qubit measurements are usually carried out at temperatures less than 30 mK. Since
the smallest relevant frequencies of about 3 GHz correspond to about 140 mK, this
guarantees the suppression of dissipation due to thermal quasi-particles.

Such low temperatures are reached with a dilution refrigerator. In the present
work, a wet dilution refrigerator from High Precision Devices (HPD) is used.

Its operation principle is based on the phase separation of a 4He - 3He isotope
mixture when cooling below 0.5 K by pumping [Ens00]. The extractable cooling
power originates from the dilution of 3He atoms from the 3He rich phase into the
dilute phase, consisting of superfluid 4He and 3He behaving as a Fermi liquid. This
process takes place in the so called mixing chamber. To sustain a cyclic cooling
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3.2 Qubit measurements

(a)

(b)

(c)

Figure 25: (a) Dilution refrigerator used in the present work for qubit measurements.
The various temperature stages are visible. (b) Mounted and wire bonded
tunable transmon sample on the sampleholder. (c) Enlarged view of the
base plate of the cryostat. All sample boxes including the microwave switch
and circulators are visible.
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3 EXPERIMENTAL SETUP

sample
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Figure 26: Schematic diagram of the microwave setup and experimental wiring used
for qubit spectroscopy.

process, the mixing chamber is continuously supplied with 3He, while helium from
the dilute phase is extracted and purified to 3He in the still.

Figure 25(a) shows the inside of the employed dilution refrigerator.

3.2.2 Microwave setup for spectroscopy and experimental wiring

A schematic diagram of the employed microwave setup including the experimental
wiring in the cryostat and at room temperature is given in figure 26.

The manipulation tone from a microwave generator and the probe tone from the
vector network analyzer (VNA) are combined by means of a directional coupler.
The VNA is connected with the −20 dB coupled port and the microwave line going
into the cryostat is connected to the input port of the directional coupler.

In the cryostat, the microwave signal is attenuated at various temperature stages
to thermalize the inner conductor before it reaches the feedline of the sample.
Together with the measured cable attenuation in the line going to the sample of
about −10 dB and an additional attenuation of the VNA signal before entering the
directional coupler, the net attenuation of the probe tone corresponds to −100 dB.

The outgoing signal passes two cryogenic circulators with their third port shunted to
50 Ω, respectively, to avoid backscattering of thermal noise from above temperature
stages, in particular noise produced by the amplifier. At the 4K stage, the signal
is high-pass filtered and amplified with a Low Noise Factory high electron mobility
transistor (HEMT).
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Before entering the second port of the VNA, the signal is amplified in two stages
at room temperature.

To enable flux tuning of the transmon, a superconducting coil with 500 windings is
attached around its sample box. The coil is controlled with a galvanically decoupled
electronics.

3.2.3 Sample mounting

Figure 25(c) shows the base plate of the dilution refrigerator with all samples
mounted.

A sample comprising tunable transmon qubits is mounted on the sample holder
shown in figure 25(b), which is compatible with the flux coil sample box. The
microwave setup depicted in figure 26 corresponds to the measurement line of this
sample. A cryoperm cylinder which is attached around the sample box ensures
magnetic shielding.

A non-tunable transmon sample with a single Josephson junction connecting the
capacitor pads is mounted in a aluminum sample box, also depicted in figure 25(c).
Since the aluminum box is superconducting at base temperature, proper magnetic
shielding is guaranteed. In this measurement line, only one circulator is installed.

To enable easy qubit detection and fast measurements due to a better signal to noise
ratio, the mounted transmon samples feature strongly coupled readout resonators
to the feedline and a stronger qubit to resonator coupling. The designed and
simulated parameters of the mounted samples are a coupling quality factor of QC =
1000 and a loaded qubit quality factor of QL,q = 3000. The increased resonator-
qubit coupling does not lead to a Purcell induced limitation of the transmon´s
relaxation time.

A third measurement line is equipped with a sample featuring four weakly coupled
microstrip resonators. Those allow to measure the internal quality factor of the
resonators and therefore the quality of the patterned aluminum films.

4 Experimental results

This section summarizes the experimental results obtained in the present work.

Section 4.1 gives the results of atomic force microscopy (AFM) measurements, car-
ried out to investigate the surface roughness of patterned aluminum films. Tunnel
junction characterization at room temperature and Josephson junction transport
measurements are presented in section 4.2. Structured microstrip resonators are
investigated in section 4.3 and section 4.4 gives the obtained results in spectroscopic
qubit measurements.
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4 EXPERIMENTAL RESULTS
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Figure 27: Atomic force microscopy pictures of prepared aluminum films on intrinsic
silicon. (a) Sputter deposited aluminum film with a thickness of 70 nm,
∆z = 16 nm, RRMS = 2.0 nm. (b) Sputter deposited aluminum film with
a thickness of 120 nm, ∆z = 15 nm, RRMS = 2.4 nm. (c) Film surface
after a typical argon clean step without thoroughly evacuating the chamber
before, ∆z = 14 nm, RRMS = 1.2 nm. (d) Film surface after a typical argon
clean step (22 min effective) with evacuating the chamber to 5 · 10−7 mbar,
∆z = 33 nm, RRMS = 3.8 nm. [Hor07]
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4.1 AFM data of the patterned aluminum films

4.1 AFM data of the patterned aluminum films

The properties of the deposited aluminum films in terms of crystal structure, sur-
face roughness and homogeneity are decisive for the behaviour of the patterned
Josephson junction and the corresponding qubit, as well as the internal quality
factor of the resonators.

Aluminum films which are sputtered under the conditions presented in section 2.1
are polycrystalline. To obtain a good quality qubit, metal films need to be very
clean and homogeneous. This is achieved by sputter depositing aluminum with a
comparably high power for only a short time in the range of several minutes, to
avoid a heating of the substrate which would increase the atom mobility and lead
to larger inhomogeneity. By that, the surface of the aluminum film becomes as
smooth as possible which is important to avoid the formation of pinholes in the
tunnel barriers of the fabricated Josephson junctions.

Figure 27 shows atomic force microscopy (AFM) pictures of prepared aluminum
films. Comparing figures 27(a) and 27(b) shows the modification of the granularity
as well as the film roughness with increasing thickness.

In figure 27(d), the film of figure 27(b) is cleaned as done for qubit fabrication. The
RMS roughness increases by about 1.5 nm, which is mainly due to a large scale
roughening rather than single peaks emerging. This local smoothness prevents
pinholes to occur which may short the Josephson junction.

It is important to note, that the cleaning process is highly dependent on the back-
ground pressure conditions in the loadlock. Figure 27(c) shows the surface of a
cleaned aluminum film without evacuating the loadlock to about 5 · 10−7 mbar.
The roughness is strongly decreased. Measuring the aluminum erosion during such
a cleaning step however reveals, that the cleaning is highly inefficient. Both obser-
vations can be explained by water and oxygen remnants in the chamber leading to
a constant reoxidation and a saturation of the plasma ions.

4.2 Tunnel junction characterization

In the course of building the tunnel junction in this work, several major challenges
needed to be overcome.

Preparing the first samples, the attention was focused on the roughness of the
patterned aluminum films. While optimizing deposition parameters, experiments
with a small oxygen admixture during film growth to decrease the surface rough-
ness were carried out. Since it did not introduce crucial advantages and oxygen
implantation modifies the superconducting parameters of the aluminum film, this
approach was dropped.

After fabricating the first tunnel junctions it became evident, that the native ox-
ide is not removed entirely during the cleaning step just before oxidation. After
realizing the malfunction of the sputter deposition tool and fixing it as described
in section 2.1, results improved quickly.
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Figure 28: Room temperature transport characteristics of the prepared tunnel junc-
tions. (a) I-V characteristic of a tunnel junction of resistance Rn = 1.7 kΩ
(blue) and a junction area of 1.5µm2. The corresponding critical current
density is jc = 10.4 A

cm2 . The non-ohmic behaviour is clearly visible. (b)
Enlarged view of (a) for the range |U | . 0.2 V, where Brinkman´s model
(blue curve) for the tunnelling conductance applies. Extracted values from
the model are a barrier thickness d = 2.6 nm and a mean potential barrier
height Φ̄ = 1.1 eV.

Further adapting parameters regarding film thickness and oxidation exposure fi-
nally led to the results presented in sections 4.2.1 and 4.2.2.

4.2.1 Room temperature characteristics

Figure 28(a) shows the room temperature I-V characteristic of a prepared tunnel
junction. From the linear regime at |U | . 0.05 V, the resistance Rn = 1.7 kΩ can be
extracted. The junction area is 1.5µm2, corresponding to a critical current density
of jc = 10.4 A

cm2 . A deviation of the I-V characteristic from the linear ohmic branch
due to tunnelling effects described in section II.1.5 is clearly visible.

According to Brinkman´s model for electron tunnelling through a thin barrier,
the barrier thickness of the tunnel junction is d = 2.6 nm and the mean potential
barrier height is Φ̄ = 1.1 eV, taking into account data points with |U | . 0.2 V.
In addition, the model suggests a barrier asymmetry of ∆Φ = 0.19 eV, showing a
small difference in interface quality of the tunnel junction.

The value of the mean barrier height Φ̄ is close to the maximum voltages applied in
the experiment, which explains the considerable deviation of the I-V characteristic
from the ohmic branch. The fitted curve is shown in blue in figure 28(b).

In figure 29(a), the resistance-area product RnA is plotted against the junction area
A. Since RnA ≈ const., scaling of the tunnel junctions with their size is validated.
This property is directly related to the quality and purity of the tunnel barriers
and their interfaces.
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Figure 29: (a) Validation of the scaling of the sheet resistance Rn with junction area
A for samples with different oxygen exposure (i), (ii). The mean value of
RnA is shown in blue for both samples. (b) RnA with respect to oxy-
gen exposure. The red line shows the expectation from Kleinsasser et al.
[Kle95]. Blue lines correspond to exposure parameters chosen to prepare
samples (i), (ii).

A resistance of 2.5 Ω is subtracted from the measured Rn to account for the lead res-
istance of the sample given rise by the effective two-point measurement technique.
Error bars occur due to uncertainties in measuring Rn as well as determining A.

The mean values of RnA for the samples prepared with different oxygen exposure
are depicted in blue.

Figure 29(b) shows the Kleinsasser expectation (red) of RnA with respect to oxygen
exposure E, following a power dependence

RnA ∝ E0.4. (137)

While the measured RnA of sample (i) deviates from the expectation only by about
10%, a larger discrepancy of roughly one order of magnitude occurs for sample (ii).
This is most likely due to a heating of the sample during the cleaning process to
about 60 °C, leading to higher oxygen mobility and therefore an enhanced oxidation
process.

Since values higher than expected from figure 29(b) were observed in more samples
with similar oxygen exposure, it is evident that RnA of the prepared Josephson
junctions does not strictly follow the dependence given in equation (137) in the
present exposure regime.

The breakdown voltage of the prepared tunnel junctions is in the range (0.6−0.8) V,
depending on the thickness of the tunnel barrier. These values are characteristic for
aluminum tunnel junctions [Sch11] and therefore give strong evidence for electron
tunnelling.
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Figure 30: I-V characteristics of prepared Josephson junctions measured at cryogenic
temperatures. (a) A 2∆-kink is visible but smeared out. Ic is suppressed
and strongly scales with measurement temperature. The strong smearing
of the voltage branch indicates subgap states in the electrodes. (b) Char-
acteristic of a recent Josephson junction. The 2∆-kink is very sharp and
the characteristic heating effect at 2∆ is visible.

4.2.2 Josephson junction transport characterization

Figure 30 shows I-V characteristics of prepared Josephson junctions measured at
cryogenic temperatures.

The characteristic of the sample given in figure 30(a) shows a smeared kink around
2∆, corresponding to ohmic tunnelling of quasi-particles. The measured critical
current Ic is suppressed with respect to the value corresponding to the given Rn,
depicted by the horizontal dashed line. The strong smearing of the voltage branch
indicates subgap states in the electrodes which might be due to defects in the inter-
faces. The pronounced rounding of the voltage branch together with the depicted
scaling of its shape and Ic with measurement temperature can be explained by a
large quasi-particle abundance caused by poor superconducting properties of one
or both electrodes. This claim is supported by the fact, that a critical current can
be observed only up to 0.9 K and superconductivity of the electrodes up to 1.0 K.

It is important to recognize though, that the subgap current of the Josephson
junction is less than 1% of the measured Ic for |U | < 0.08 mV, which is the relevant
region of the Josephson junction when operated as a qubit.

The characteristic of the latest fabricated Josephson junction is depicted in figure
30(b). The measured Ic and Rn match the calculation by Ambegaokar and Baratoff
given in equation (110) to a high degree.

The 2∆-kink is very sharp and pronounced and the strong temperature dependence
of Ic is not observed, indicating proper superconducting behaviour of the electrodes.
Superconductivity as well as a critical current can be measured until 1.13 K, which
is close to the literature value of 1.18 K [Nor06] for the critical temperature of bulk
aluminum.

In the voltage branch where |U | ≈ 2∆, a characteristic heating effect is observed,
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Table 2: Overview of the measured high power quality factors Qi, QL of the different
microstrip resonator designs.

QC
(
103) 50 5 1

Qi
(
103) 14.7± 0.6 24.9± 0.9 24± 6

QL
(
103) 8.96± 0.22 3.648± 0.021 0.669± 0.007

which appears as an increase in voltage with decreasing current. The reason for
this effect is thermal activation of quasi-particles, leading to an enhanced tunnelling
probability.

The smearing of the voltage branch between ∆ and 2∆ is most likely caused by
defects in the interfaces. Since the effect is increased by thermal quasi-particles,
an improved performance of the Josephson junction operating as a qubit at base
temperature of the dilution refrigerator can be expected.

The measured subgap current is roughly 2.5% of Ic in the region where |U | <
0.1 mV, indicating the desired strong underdamping of the Josephson junction.

4.3 Resonator measurements

In this section, characteristic parameters of the prepared microstrip resonators
are investigated. Measurements are carried out with the samples mounted in the
dilution refrigerator.

Measurements with the sample comprising the weakly coupled microstrip reson-
ators, presented in section 4.3.1, allow to extract information about the internal
quality factor Qi of the resonators and aluminum film quality. In section 4.3.2,
a resonator on the transmon sample is analysed to obtain primarily the coupling
quality factor QC , which defines the proper measurement regime for qubit meas-
urements.

All power specifications given in the present section are to be understood as VNA
settings. An additional attenuation of −30 dB is installed in the measurement line
entering the cryostat. Microwave wiring inside the cryostat leading to the sample
is identical for all lines.

4.3.1 Weakly coupled microstrip resonators

To extract several characteristic parameters of a transmission line resonator, usually
a circle fitting method in the complex Gauß plain is applied. The fitting model
used in the present work is based on the analysis given by [Gao08, Kha12], the
fitting algorithm is provided by [Pro13].

Since the internal quality factor Qi, that can be extracted from such a model is
limited by the coupling quality factor QC to a certain extend, an exact value for
Qi is obtained only for weak coupling, where QC ≈ Qi.
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Figure 31: (a) High power transmission amplitude |S21| (red) of a microstrip resonator
with a designed coupling QC = 5 · 103. The fitted amplitude deduced
from a circle fit is shown in blue. The extractable resonator characteristics
are Qi = (24.9± 0.9) · 103 and QL = 3648 ± 21. (b) Power dependence
of the resonator frequency f and the internal quality factor Qi. Error
bars are indicating fitting errors. (c) Transmission amplitude (red) with
fitted curve (blue) of a weakly coupled microstrip resonator with a designed
QC ≈ 50 · 103. Extracted resonator parameters are Qi = (14.7± 0.6) · 103

and QL = (8.96± 0.22) · 103. (d) Power dependence of Qi of the weakly
coupled resonator.
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Figures 31(a), (c) show measured high power transmission amplitude data of mi-
crostrip resonators with a designed coupling QC = 5 · 103 (a) and QC ≈ 50 · 103

(c).
Table 2 summarizes the extracted parameters from the associated circle fit. The
measured Qi for the two stronger coupled resonators are well in accordance while
a lower value is found for the weakly coupled resonator. This might mainly be
due to a higher measurement temperature giving rise to a larger abundance of
thermally excited quasi-particles. Measurements at the weakly coupled resonator
were carried out at higher temperatures as the cryostat was already warming,
caused by a blocking probably in the 1K-pot capillary.
Measured values of QL are well in accord with the designed coupling. It is inter-
esting to note that QL of the weakly coupled resonator is limited by its internal
quality factor in the measurement.
Respective power dependences of the resonance frequency and the internal quality
factor are given in figures 31(b), (c). A flattening of Qi is particularly visible
in figure 31(b) at about −20 dBm. According to the estimation given in section
4.4, this roughly corresponds to the single photon regime, where Qi,s ≈ 6 · 103.
This single photon internal quality factor Qi,s is lower than expected. A main
reason might be the extensive cleaning procedure, degrading the surface quality
of the aluminum film. This could be avoided by including the patterning of the
microstrip resonators in the second lithography step. Another possible explanation
is an imperfect etching process, inducing edge spikes caused by redeposition. This
can be ascribed to the ballistic argon etching process and a possible advancement
is to employ pure chemical etching.

4.3.2 Qubit readout resonators

Figure 32(a) shows an overview of the readout resonators on the transmon sample.
The smallest resonator with a frequency of about 9 GHz is not visible in the given
transmission amplitude spectrum as it exceeds the VNA´s measurement range.
Comparing the resonance frequencies with the design values given in table 1 re-
veals a systematic shift of about 150 MHz towards lower frequencies. This can be
explained by uncertainties in the geometric size of sample features and a sample
environment that does not exactly correspond to the conditions assumed in the
simulation. A small kinetic contribution to the resonators´ inductances is also
possible.
A detailed transmission amplitude spectrum of the 5.83 GHz resonator, mainly
used for qubit measurements, is given in figure 32(b). Fitting data is summarized
in table 2.

4.4 Qubit spectroscopy

To observe the dressed eigenstates of the resonator qubit system given in equation
(75) and the dispersive shift occurring in the effective Jaynes-Cummings Hamilto-
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Figure 32: (a) Transmission amplitude |S21| giving an overview of the transmon
readout resonators located at 5.83 GHz, 6.81 GHz and 7.67 GHz. (b) Trans-
mission amplitude (red) with respective fit (blue) of the 5.83 GHz readout
resonator. The applied microwave power is P = +30 dBm. Extracted
resonator characteristics are Qi = (24± 6) · 103 and QL = 669± 7.

nian, equation (78), measurements need to be performed in the single photon re-
gime. This corresponds to an average occupation of the readout resonator with
only a single photon, which can be achieved by strongly decreasing the probe tone
power.

With a hardware attenuation of the probe signal of −100 dB, as specified in figure
26, the microwave power Pfl at the feedline of the sample can be calculated to be

Pfl = 1 · 10−13 mW, (138)

assuming an applied probe tone power of −30 dBm and noting that 0 dBm = 1 mW.

With the resonator quality factors extracted from the resonator fitting in section
4.3 and a resonator frequency of 6 GHz, the microwave power Pres in the resonator
can be calculated with the approximate formula [Bar09]

Pres = 2Q2
L

πQC
· Pfl. (139)

The average number 〈n〉 of photons in the resonator becomes

〈n〉 ≈ 1.7, (140)

clearly complying the single photon condition.

All power values given in this section are set values on the respective device without
taking into account additional hardware attenuation.

66



4.4 Qubit spectroscopy

5.835 1

0 0.5 1.0 1.5 2.0
05.825

5.83

0.01

0.015

0.02

0.025

0.03

Figure 33: Shift in resonance frequency of the 5.83 GHz readout resonator dependent
on the applied magnetic flux corresponding to a bias current I. Colours
represent the transmission amplitude |S21|. The observed periodicity is in
close agreement with the calculated value for one flux quantum Φ0, given
in equation (141). A detailed scan of the shift is shown in green. Several
features are visible.

4.4.1 Flux bias sweep

Sweeping the current of the flux coil gives rise to a change of the transmon´s
resonance frequency due to the control of the effective critical current of the split
Josephson junction. If the transmon frequency matches the frequency of its readout
resonator, the detuning ∆ vanishes and an avoided level crossing can be observed.
Figure 33 shows the transmission amplitude |S21| of the 5.83 GHz readout resonator
dependent on the applied magnetic flux.
According to the specification of the utilized flux coil, an applied current of 1 mA
corresponds to a magnetic induction of 2.15 · 10−5 T at the position where the
sample is located. With a designed inner area of the split Josephson junction of
120µm2, one can calculate the coil current corresponding to one flux quantum Φ0
to be

Φ0 =̂ 0.8 mA. (141)

This value corresponds to the periodicity observed in the experiment of figure 33.
Since no clear avoided level crossing is visible, the transmon frequency never
matches with the one of the readout resonator but rather comes in close prox-
imity, giving rise to a repelling of the resonator´s resonance.
A detailed scan of the shift in the resonator´s frequency is depicted in green. The
measured transmission amplitude |S21| corresponds to a frequency point close to
the resonator´s dip minimum.
Several periodically occurring features are visible which may be ascribed to the
coupling to a nearby quantum system. Since the periodicity is about 0.27 mA,
this could be another qubit which is located close to the edge of the chip where
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Figure 34: Dispersive shift of the transmission amplitude |S21| of the 5.83 GHz readout
resonator dependent on the microwave driving frequency fMW and its
power PMW . The VNA power is set to −30 dBm, corresponding to the
single photon regime. With increasing microwave power, the distinct trans-
mon transitions |0〉 ↔ |1〉, 1

2 (|0〉 ↔ |2〉) and |1〉 ↔ |2〉 appear successively,
before higher order transitions are excited and become visible.

magnetic conditions are different. As the signatures do not occur at certain fixed
frequencies, coupling to two-level systems (TLS) can be excluded, assuming that
they do not respond to magnetic fields. Possible candidates roughly matching the
observed frequencies are the |0〉 ↔ |2〉 transition and similar higher order two-step
transitions.

4.4.2 Driving the qubit in the dispersive regime

To observe a dispersive shift in resonance frequency dependent on the qubit state,
and thereby locate the qubit frequency, a wide frequency range is scanned by
sweeping the manipulation tone frequency and measuring the resonator response.
Biasing the transmon to its flux sweet spot at 0.35 mA, according to figure 33, a
broad signature is observed at about 4.6 GHz. In the course of several measure-
ments with different microwave driving powers PMW , the existence of relatively
strong flux noise is indicated. This can be explained by a malfunction of the util-
ized current source and the respective dc-wiring. Further possible error sources
are a missing cryogenic filtering of the coil current or crosstalk between the cur-
rent signal line and other dc-lines sharing the same cord when passing through the
cryostat.
To resolve distinct transmon transitions which ultimately provides evidence for the
existence of a quantum system, measurements are carried out at the non-tunable
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transmon sample mounted in the cryostat, which is not subject to flux noise.

Figure 34 shows the dispersive shift of the transmission amplitude |S21| of the
5.83 GHz readout resonator dependent on the microwave driving frequency fMW

and its power PMW . The power of the probe tone coming from the VNA is set to
−30 dBm, corresponding to the single photon regime.

For small driving powers, only the fundamental qubit transition |0〉 ↔ |1〉 is ex-
cited by the manipulation tone. With increasing microwave power, two additional
transitions occur at lower frequencies. Those correspond to half of the energy of
the two-photon process |0〉 ↔ |2〉 and the next order transmon transition |1〉 ↔ |2〉,
respectively. With further increasing microwave power, even more transitions are
excited which partly overlap and could be addressed in a rigorous analysis.

Detailed vertical slices of figure 34 are given in figure 35. The absolute anharmon-
icity α of the transmon corresponds to the distance of the transitions |0〉 ↔ |1〉 and
|1〉 ↔ |2〉. From figure 35,

α = 210 MHz (142)

can be extracted, matching the designed value from equation (134) within 7%.

The frequency position of the transitions measured in figures 34 and 35 are in-
dependent of the applied microwave power PMW , which strongly supports the
presented assignment of the transitions. Furthermore, the qualitative peak widths
and heights are well in accord with the expectation that the two-photon process
|0〉 ↔ |2〉 shows a higher transition amplitude than the fundamental one-photon
process |0〉 ↔ |1〉 for larger driving powers and vice versa [Lis08].

As described in section II.2.1, small fluctuations in the energy level splitting of the
qubit states give rise to dephasing due to fluctuations in the Larmor frequency. As
a result, the observed peak width in figure 35 increases, which is called inhomo-
geneous broadening [Lis08]. This enables a rough estimate of the dephasing time
T2 of the transmon.

Since the measured full width σ, measured at half maximum of the dispersive
excitation peak |0〉 ↔ |1〉, shows a so called power broadening [Lis08] dependent
on the manipulation tone power PMW , the relevant quantity is the zero-power
excitation peak width σ0. It is obtained by measuring σ for different powers PMW

and extrapolating to vanishing power.

According to [Abr61], there is a linear dependence of the peak width σ and the
applied microwave amplitude, which is proportional to P 1/2

MW . A linear regression
of measured data points is given in figure 36(a). The extracted zero-power width
σ0 = 2.4 MHz corresponds to a dephasing time

T2 = 1
πσ0

= 0.13µs. (143)

Assuming the relaxation time T1 to be in the same region, this value is in good
agreement with the estimation from simulated data given in equation (132).
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Figure 35: Dispersive shift of the transmission amplitude |S21| of the 5.83 GHz readout
resonator dependent on the microwave driving frequency fMW and its
power PMW . Small pictures are showing detailed slices of the colour plot
given in figure 34.
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Figure 36: (a) Full width σ, measured at half maximum of the dispersive excitation
peak dependent on the amplitude P 1/2

MW of the driving microwave pulse.
Data points correspond to microwave pulse powers in the range −42 dBm
to −27 dBm. Vertical error bars occur due to an uncertainty in determin-
ing the line width σ. A linear regression allows extrapolation of the line
width to vanishing driving amplitude, which yields σ0 = 2.4 MHz. This
corresponds to an approximate dephasing time of T2 = 0.13µs. (b) Ac-
Stark shift of the transmon |0〉 ↔ |1〉 transition dependent on the probe
tone power PV NA, corresponding to the average number of photons 〈n〉
in the resonator. An ac-Stark shift of 80 MHz is observed in the scanned
region. The manipulation tone power PMW is set to −27 dBm and the
5.83 GHz resonator is investigated. The coloured transmission amplitude
|S21| is normalized for each vertical line to obtain maximum resolution.

71



4 EXPERIMENTAL RESULTS

4.4.3 Ac-Stark shift

As shown in equation (80) in section II.3.1.2, the ac-Stark shift depends on the
number of photons 〈n〉 in the readout resonator. It can be observed by sweeping the
probe tone power applied by the VNA, which is proportional to 〈n〉, and measuring
the shift in the excitation frequency of the |0〉 ↔ |1〉 transition. Measured data is
shown in figure 36(b).

Since the transmon frequency is below the resonator frequency, the detuning ∆ is
negative and therefore the ac-Stark shift, proportional to χ, is also negative as χ
and ∆ always have the same sign. This is in agreement with an observed ac-Stark
shift towards smaller frequencies.

The influence of the qubit on the photon number in the resonator is neglected.
This is a good approximation for a large detuning between qubit and resonator, as
is the case in the present measurement.

While the shift is proportional to the coupling g between qubit and resonator,
the observed ac-Stark shift of 80 MHz is in the range with the one measured in
[Sch05, Sch07].

4.4.4 Qubit spectrum: 2d spectroscopy

While distinct transmon transitions cannot be resolved with the tunable transmon
sample in the present setup due to flux noise, a broad excitation peak is visible for
a large microwave driving power of −3 dBm.

Figure 37 shows the transmon spectrum where bias current I and microwave driving
frequency fMW are swept. The colour bar corresponds to the dispersive shift of the
transmission amplitude of the readout resonator. The oscillation period matches
the periodicity observed in figure 33. Herewith the tunability of the transmon due
to its split Josephson junction is demonstrated.

The signal-to-noise ratio is worse close to half-integer multiples of the flux quantum
Φ0 as the transmon frequency there gets small and a thermal noise contribution
becomes noticeable.

From a fit to equation (122), shown in figure 37 by the black curve, the effective crit-
ical current of the split Josephson junction can be estimated to be Ic,Σ = 40.7 nA,
which is roughly by a factor of three smaller than designed. This deviation is
ascribed to the strong sensitivity of Ic to oxygen exposure and Josephson junction
area, both being parameters which are hard to exactly control during fabrication.

According to the fit, the asymmetry parameter d of the split Josephson junction
indicates a difference in critical current of ∆Ic = 8.1 nA. This corresponds to
a relative asymmetry of about 20%, most likely owed to a spread in Josephson
junction size.
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Figure 37: Transmon spectrum. Sweeping the bias current I and the microwave driv-
ing frequency fMW reveals the tunability of the transmon frequency. The
period of the oscillation equals the one observed in figure 33. The VNA
power is −30 dBm and the manipulation tone power is −3 dBm. Trans-
mission amplitude is normalized for each column. The black curve shows
a fit of measured data to equation (122). Extracted fit parameters are
Ic,Σ = 40.7 nA and ∆Ic = 8.1 nA.
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Chapter IV Summary and outlook

The aim of the present work was the development of a frequency tunable transmon
qubit in microstrip geometry.
The transmon architecture promises a large dephasing time of the qubit due to
its strongly reduced sensitivity to charge noise. This is achieved by employing
the architecture of a conventional single Cooper pair box and inserting a large
shunt capacitance in parallel to the Josephson junction. Due to an increase of the
Josephson energy to charging energy ratio up to about 300, the operation point of
the qubit is shifted into the phase regime, where the Josephson phase constitutes
the good quantum number and therefore describes the state of the system.
The price that has to be paid to gain the insensitivity to charge noise is a reduction
of the anharmonicity of the qubit. As the transmon can be regarded as a harmonic
oscillator, possessing a slightly non-equidistant energy level splitting, it is not a real
two-level quantum system. It is therefore crucial to sustain a large enough residual
anharmonicity of the transmon, which allows to assign the two fundamental qubit
states to well defined distinct energy levels and thereby operate it as a qubit. In
general, this is possible as long as the excitation peak broadening, roughly corres-
ponding to the inverse dephasing time of the qubit, is smaller than the absolute
anharmonicity of the transmon.
As the charge noise sensitivity decreases with higher algebraic complexity compared
to the loss in anharmonicity, a good compromise can be found when designing a
transmon qubit.
The employed microstrip design features several advantages compared to the com-
monly used coplanar structure. As the reference ground potential of the center
strip is fairly distant, electric fields are small, leading to a strong reduction of loss,
especially at surface oxides. Furthermore, field lines are mainly focussed into the
substrate by the ground plane of the microstrip, where nearly no defect states,
potentially contributing to loss, exist. This is why the geometry is often called
“2.5d”.
While the microstrip design is a relatively easy and elegant approach to design a
transmon CQED system, dimensions are in general larger than in a coplanar struc-
ture, which is a drawback when it comes to scalability or even the implementation
of a many qubit printed circuit system.
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In the present work, a transmon CQED system is designed and simulated to start
with. The geometry features four mutually frequency detuned λ

2 -resonators, each
capacitively coupled to a transmon qubit. The design allows for frequency multi-
plexed simultaneous qubit readout and provides good statistics of qubit parameters.

Tunability of the transmon qubits is enabled by the implementation of a split
Josephson junction forming a dc-SQUID loop. The effective critical current and
therefore the qubit frequency is controlled by external magnetic flux.

Sample preparation is done by aluminum sputter deposition and optical litho-
graphy. A major challenge in preparing the qubit samples investigated in the
present work is the fabrication of high quality Josephson junctions. Since Joseph-
son junction fabrication with the present setup was not an available technology
in the group before, parameters in the cleanroom and particularly for the sputter
deposition tool needed to be optimized. During that process, several mechanical
changes of the equipment were necessary until the desired behaviour could be ob-
served.

In the course of optimizing Josephson junctions, aluminum film quality and in par-
ticular its surface roughness were investigated. A smooth surface allows for a good
quality interface between electrode and oxide barrier which is ultimately required
for a high quality Josephson junction. The surface roughness is investigated by
means of atomic force microscopy (AFM) measurements.

Josephson junction transport measurements are presented, measured at room tem-
perature as well as at cryogenic temperatures.

The characteristic non-ohmic behaviour of the current-voltage characteristic at
room temperature and a good scaling of the Josephson junction sheet resistance
with its area is observed. A good accordance of the resistance-area product of
the prepared Josephson junctions with the literature expectation for the applied
oxygen exposure is demonstrated.

The low-temperature transport characteristic of the prepared Josephson junction
complies with the theoretical prediction and the underdamped nature of the fab-
ricated Josephson junctions is verified.

Investigation of the microstrip resonators demonstrates that the resonance frequen-
cies comply with the designed values apart from a small systematic shift towards
lower frequencies. The extracted single photon internal quality factor, obtained in
a complex circle fit, is smaller than expected, showing the potential in improving
aluminum film quality. According to the expectation, it is demonstrated to be
independent of the applied microwave power within the single photon regime.

Spectroscopic qubit measurements unambiguously provide evidence of a quantum
system and the existence of a transmon qubit.

Performing a flux bias sweep, a clear oscillation of the resonator frequency can be
observed. This is due to the close proximity of the transmon to the resonator in
frequency and the effect is given rise by a repelling of levels as can be observed in
an avoided level crossing. The oscillation period exactly matches the current cor-
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responding to one flux quantum, confirming the functioning of the split Josephson
junction.
Definite proof for the quantum nature of the transmon qubit is given by the obser-
vation of distinct transition peaks that can be unambiguously assigned to transmon
transitions. The driving power dependence of the peak height and width is in per-
fect accordance with the expectation.
From the excitation peak broadening of the fundamental qubit transition, the de-
phasing time of the transmon can be estimated to be 0.13µs. The relaxation time
of the qubit is expected to be in the same range and therefore agrees with the
prediction from the simulation.
The observation of the ac-Stark shift of the fundamental qubit transition frequency
indicates the validity of the underlying Jaynes-Cummings Hamiltonian.
A qubit spectrum explicitly gives the tunable frequency range of the transmon
by measuring the dispersive shift at a driving frequency dependent on external
magnetic flux. The observed periodicity matches the one of the resonator signal
and the spectrum is fitted to the theoretical expectation.

In a logical subsequent step, spectroscopic qubit measurements performed in this
work could be further substantiated by measurements in the time domain. While
most spectroscopic measurement techniques have their analogue in the time do-
main, the mentioned standard experiments like Rabi and Ramsey experiments can
be performed to obtain precise information about the transmon´s dynamical be-
haviour.
Due to the comparatively large area Josephson junctions, the present sample is a
suitable candidate to study and analyse the potentially large number of two-level
systems (TLS) in the oxide barriers.
Implementing a slightly modified chip design with two or more weakly detuned
qubits being coupled to the same resonator promises interesting physics, as the
qubits can be addressed independently by individual manipulation tones. In this
way, entangled qubit states can be created, which opens up the possibility of
performing multi-qubit gate operations, representing the most primitive form of
quantum computation. An elegant scheme to implement such a multi-plexed sim-
ultaneous qubit manipulation and readout with one arbitrary waveform generator
was demonstrated recently [Jer13].
Another intriguing possibility to explore new physics within close reach is the coup-
ling of two or more resonators to a single qubit. This offers the opportunity to create
entangled single photon states, mediated and controlled by the common qubit. In
the extreme case of many resonators, this corresponds to a bosonic bath, coupled
to a single fermionic quantum system, being the qubit. Such a system, consti-
tuting a quantum simulator is of special interest also from the theoretical point
of view, since the validity of complex theoretical models can be investigated. An
experimental implementation is proposed in [Hou12] for instance.
Decreasing the overlap area of the Josephson junctions by employing electron beam
lithography directly translates into an enhancement of the qubit´s coherence be-
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haviour. Together with a weaker coupling between the readout resonators and the
feedline, to avoid running into the Purcell limitation of the relaxation time, this
promises a huge potential for a high quality long-lived transmon qubit that can
compete with similar planar architectures.

Such a transmon qubit, whose properties can quickly be adjusted depending on the
demands of the particular circuit, is a basic module for a great variety of possible
applications to investigate intriguing physics and ultimately the laws of nature.
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A Fabrication parameters

A.1 Process overview

bake

strip

UV exposure

resist
application

bake

develop

etchstrip

cleaning, oxidation,
film deposition

layer of unsolvable photoresist in developer

layer of solvable photoresist in developer

photo resist mask

UV exposure

etch

develop

Al

Si resist
application

Figure 38: Overview of the applied two-step process for sample preparation. Alu-
minum layers are depicted in red and the substrate in grey. Photoresist is
shown in green if it is soluble in the developer and in blue otherwise.

Figure 38 shows a schematic overview of the two-step optical lithography process
applied in this work for sample preparation.

A.2 Aluminum deposition, cleaning and oxidation

Table 3: Argon cleaning in loadlock to remove water residuals

Cleaning power Loadlock
pressure Cleaning time

20 W 0.13 mbar 120 s
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A FABRICATION PARAMETERS

Table 4: Deposition parameters of first aluminum layer M1. Presputtering of the
utilized gun takes place with the sample outside the main chamber (MC, 1)
to clean the target as well as after inserting the sample (2) to avoid target
contamination from the sample transfer.

MC pressure Sputter
power

Presputter
time 1

Presputter
time 2

Sputter
time Gun

1.3 · 10−3 mbar 300 W 120 s 50 s 360 s extended

Before metal deposition, the substrates are cleaned in the loadlock of the sputter
deposition tool to remove water residuals and organic remnants. This process can
be regarded as low power etching. The utilized process parameters are summarized
in table 3.
The employed parameters for aluminum deposition are given in table 4.

Table 5: Intensive argon cleaning in the loadlock to remove the native oxide. The
turbo pump of the loadlock is adjusted half turn open to reduce the pumping
power.

Cleaning power Loadlock
pressure Cleaning time

100 W 2.3 · 10−2 mbar 18 min eff.
2 min clean, 30 s pause

Table 6: Deposition parameters of second aluminum layer M2

MC pressure Sputter
power

Presputter
time 1

Presputter
time 2

Sputter
time Gun

1.3 · 10−3 mbar 300 W 120 s 50 s 240 s extended

Table 7: Oxidation exposure

Static pressure Oxidation time
31.5 mbar 60 min

After structuring the first aluminum layer of the sample ex-situ, the native surface
oxide needs to be removed before controlled reoxidation. This is done in an intensive
cleaning step in the loadlock of the sputter deposition tool. As indicated in table 5,
the plasma is switched off every two minutes for 30 seconds to prevent the sample
from heating up.
Deposition parameters for the second aluminum layer given in table 6 match those
from table 4 apart from the adjusted sputtering time.
Oxidation exposure is given in table 7. The loadlock turbo pump is switched off and
slowed down by the oxygen streaming into the chamber. This allows to evacuate

86



A.3 Resist application

the loadlock after oxidation with the turbo pump and respective roughening pump
which is suited for pumping reactive gases.

A.3 Resist application

time

spinning
frequency

cover whole chip
homogeneously adjust resist thickness

to ~1µm

Figure 39: Schematic graph showing the two ramps during resist application. In a first
step, the resist is distributed over the whole chip homogeneously, while the
thickness is adjusted in a longer subsequent step.

Table 8: Parameters for resist application using the spin coater

Resist Ramp speed,
time

Full speed,
time Acceleration

Hot plate
temperature,

time
AZ5214E 500 rpm, 5 s 6000 rpm, 60 s 7500 rpm/s 110 °C, 50 s

A.4 Optical lithography

Table 9: Exposure parameters for optical lithography using the mask aligner

Mask Exposure
power

Exposure
intensity

Exposure
time

Radiation
wavelength

chrome/soda 260 W 5.0 mW
cm2 5.5 s (360− 440) nm

Table 10: Development

Developer time
MIF726 50 s
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B IMPLEMENTATION OF COMPUTER CONTROL FOR THE SPUTTER
DEPOSITION TOOL

A.5 Resist strip

Table 11: Resist strip

Stripper Ultrasonic bath
time

Ultrasonic bath
power Cleaning

NMP/NEP 5 min 2 (a.u.) isopropyl
H2O, bidest.

A.6 ICP etching

Table 12: Etching parameters for the inductively coupled plasma reactive ion etch
(ICP)

Chamber
pressure Gas flow RF bias

power
ICP
power

Chiller
temperature

10.0 mTorr Ar: 20 sccm
Cl2: 2 sccm

100 W
C1 = 68.9%
C2 = 57.2%

100 W
C1 = 36.0%
C2 = 38.6%

20 °C

Table 13: Recipe for the etching process

Time Process
5 min O2-clean
5 min conditioning

≈ 0.5 s
nm in steps of 15 s main etch

5 min O2-clean

Before starting the actual etching process of the sample, the chamber is cleaned
with an oxygen plasma and subsequently conditioned with the parameters given in
table 12.
Depending on the thickness of the aluminum film to be etched, the etching steps
shown in table 13 can be increased up to about 30 s. During these steps, the etching
progress can be checked optically.
To guarantee a proper etching behaviour, the surface of the utilized etching wafer
needs to be clean and unspoiled.

B Implementation of computer control for the sputter
deposition tool

To operate the sputter deposition tool in an effective way and to obtain process
reproducibility, a computer control of the relevant instruments is implemented.
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The computer control of the radio frequency (RF) source Cesar136 [Dre03] is mainly
used in the intensive cleaning process mentioned in sections III.2.1 and III.2.3. It
allows to introduce regular pauses in the cleaning process, continuously check the
process for potentially occurring errors and logging of the relevant parameters.

The python script used for the cleaning process runs on pi-us56 and is called

/home/evaporate/devel/evaporate/scripts/er_cesar_control02.py

Log files are written to

/home/evaporate/devel/evaporate/logs/

Pressures of the loadlock and the main chamber are read out every few seconds
and written in a separate log file in the same folder. The pressure logging script is
called

/home/evaporate/devel/evaporate/scripts/er_pressure_control.py

The pressure log files of the format

pressurelogDDMMYYYY.txt

are copied to the group server pi-us28 two times a month by means of a cronjob
and the respective shell script

/home/evaporate/bin/log_upload.sh

running on pi-us56. The location of the log files on pi-us28 is

/home/exchange/Fabrication/logfiles/plasma1/

The mentioned cronjob also checks for the pressure logging still being executed once
per day and automatically restarts the python script after a termination caused by
a kernel reboot for instance.

An instant remote pressure readout is provided by the script

/home/evaporate/devel/evaporate/scripts/er_pressure_readout.py
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B IMPLEMENTATION OF COMPUTER CONTROL FOR THE SPUTTER
DEPOSITION TOOL

also running on pi-us56.

With the installation of the new gas handling system, the MKS mass flow controller
is included in the computer control. Directly executing the instrument library,
located at

/home/evaporate/devel/evaporate/lib/er_MKS_647C.py

sets the controller to its defaults adapted to the setup in use. Additionally, remote
setting the gas flow of all channels as well as reading out the Baratron pressure is
supported.
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