Physikalisches Institut (PHI)

Research Group Ustinov

Prof. Alexey UstinovProf. Dr. Alexey Ustinov


Physikalisches Institut
Wolfgang-Gaede-Str. 1
D-76131 Karlsruhe, Germany

tel. +49 721 608 43455
sekr. +49 721 608 43451
fax +49 721 608 46103
mail alexey.ustinov∂


Diploma degree: 1984 Moscow University of Physics and Technology, Department of General and Applied Physics
Ph.D.: 1987 Institute of Solid State Physics; Chernogolovka, Russian Academy of Sciences ("Candidate of Science")
Habilitation: 1995 Institute of Solid State Physics, Chernogolovka, Russian Academy of Sciences ("Doctor of Science")


1984-1992 Institute of Solid State Physics, Chernogolovka, Russia
1993-1995 Research Centre Jülich, Germany
1996-2008 Professor, Universität Erlangen-Nürnberg, Germany
since 2008 Professor Universität Karlsruhe (TH), Germany

Research visits and sabbaticals

1989-1991 University of Tübingen, Germany
1991-1992 Technical University of Denmark, Denmark
1992-1993 University of Rome "Tor Vergata", Italy
2005-2006 University of California, Berkeley, USA
2006 NTT Basic Research Laboratory, Atsugi, Japan

Fields of research:


  • Superconductivity,
  • Josephson junctions and arrays
  • macroscopic quantum coherence
  • superconducting qubits
  • solitons in Josephson transmission lines
  • microwave spectroscopy
  • millimeter- and submillimeter wave experiments
  • low temperature laser microscopy


Our group

Latest publications

Amplitude and frequency sensing of microwave fields with a superconducting transmon qudit.
Kristen, M.; Schneider, A.; Stehli, A.; Wolz, T.; Danilin, S.; Ku, H. S.; Long, J.; Wu, X.; Lake, R.; Pappas, D. P.; Ustinov, A. V.; Weides, M.
2020. npj Quantum information, 6 (1), 57. doi:10.1038/s41534-020-00287-w
Current-Resistance Effects Inducing Nonlinear Fluctuation Mechanisms in Granular Aluminum Oxide Nanowires.
Barone, C.; Rotzinger, H.; Voss, J. N.; Mauro, C.; Schön, Y.; Ustinov, A. V.; Pagano, S.
2020. Nanomaterials, 10 (3), 524. doi:10.3390/nano10030524
Rabi oscillations in a superconducting nanowire circuit.
Schön, Y.; Voss, J. N.; Wildermuth, M.; Schneider, A.; Skacel, S. T.; Weides, M. P.; Cole, J. H.; Rotzinger, H.; Ustinov, A. V.
2020. npj quantum materials, 5, Art.-Nr.: 18. doi:10.1038/s41535-020-0220-x
Nondegenerate Parametric Amplifiers Based on Dispersion-Engineered Josephson-Junction Arrays.
Winkel, P.; Takmakov, I.; Rieger, D.; Planat, L.; Hasch-Guichard, W.; Grünhaupt, L.; Maleeva, N.; Foroughi, F.; Henriques, F.; Borisov, K.; Ferrero, J.; Ustinov, A. V.; Wernsdorfer, W.; Roch, N.; Pop, I. M.
2020. Physical review applied, 13 (2), Art. Nr.: 024015. doi:10.1103/PhysRevApplied.13.024015
Introducing coherent time control to cavity magnon-polariton modes.
Wolz, T.; Stehli, A.; Schneider, A.; Boventer, I.; Macêdo, R.; Ustinov, A. V.; Kläui, M.; Weides, M.
2020. Communications Physics, 3 (1), Article No.3. doi:10.1038/s42005-019-0266-x
Automated analysis of single-tone spectroscopic data for cQED systems.
Fedorov, G. P.; Ustinov, A. V.
2019. Quantum science and technology, 4 (4), Art. Nr.: 045009. doi:10.1088/2058-9565/ab478b
Planar Architecture for Studying a Fluxonium Qubit.
Moskalenko, I. N.; Besedin, I. S.; Tsitsilin, I. A.; Mazhorin, G. S.; Abramov, N. N.; Grigor’ev, A.; Rodionov, I. A.; Dobronosova, A. A.; Moskalev, D. O.; Pishchimova, A. A.; Ustinov, A. V.
2019. JETP letters, 110 (8), 574–579. doi:10.1134/S0021364019200074
Dynamical decoupling of quantum two-level systems by coherent multiple Landau–Zener transitions.
Matityahu, S.; Schmidt, H.; Bilmes, A.; Shnirman, A.; Weiss, G.; Ustinov, A. V.; Schechter, M.; Lisenfeld, J.
2019. npj Quantum information, 5 (1), Art. Nr.: 114. doi:10.1038/s41534-019-0228-x
Transmon qubit in a magnetic field: Evolution of coherence and transition frequency.
Schneider, A.; Wolz, T.; Pfirrmann, M.; Spiecker, M.; Rotzinger, H.; Ustinov, A. V.; Weides, M.
2019. Physical review research, 1 (2), 023003. doi:10.1103/PhysRevResearch.1.023003
DEMETRA: Suppression of the Relaxation Induced by Radioactivity in Superconducting Qubits.
Cardani, L.; Casali, N.; Catelani, G.; Charpentier, T.; Clemenza, M.; Colantoni, I.; Cruciani, A.; Gironi, L.; Gruenhaupt, L.; Gusenkova, D.; Henriques, F.; Lagoin, M.; Martinez, M.; Pirro, S.; Pop, I. M.; Rusconi, C.; Ustinov, A.; Valenti, F.; Vignati, M.; Wernsdorfer, W.
2019. Journal of low temperature physics. doi:10.1007/s10909-019-02265-9
Phonon traps reduce the quasiparticle density in superconducting circuits.
Henriques, F.; Valenti, F.; Charpentier, T.; Lagoin, M.; Gouriou, C.; Martínez, M.; Cardani, L.; Vignati, M.; Grünhaupt, L.; Gusenkova, D.; Ferrero, J.; Skacel, S. T.; Wernsdorfer, W.; Ustinov, A. V.; Catelani, G.; Sander, O.; Pop, I. M.
2019. Applied physics letters, 115 (21), Art.-Nr.: 212601. doi:10.1063/1.5124967
Electric field spectroscopy of material defects in transmon qubits.
Lisenfeld, J.; Bilmes, A.; Megrant, A.; Barends, R.; Kelly, J.; Klimov, P.; Weiss, G.; Martinis, J. M.; Ustinov, A. V.
2019. npj Quantum information, 5 (1), Article: 105. doi:10.1038/s41534-019-0224-1
Correlating Decoherence in Transmon Qubits: Low Frequency Noise by Single Fluctuators.
Schlör, S.; Lisenfeld, J.; Müller, C.; Bilmes, A.; Schneider, A.; Pappas, D. P.; Ustinov, A. V.; Weides, M.
2019. Physical review letters, 123 (19), Article No.190502. doi:10.1103/PhysRevLett.123.190502
Granular aluminium as a superconducting material for high-impedance quantum circuits.
Grünhaupt, L.; Spiecker, M.; Gusenkova, D.; Maleeva, N.; Skacel, S. T.; Takmakov, I.; Valenti, F.; Winkel, P.; Rotzinger, H.; Wernsdorfer, W.; Ustinov, A. V.; Pop, I. M.
2019. Nature materials, 18 (8), 816–819. doi:10.1038/s41563-019-0350-3
Ferromagnet/Superconductor Hybrid Magnonic Metamaterials.
Golovchanskiy, I. A.; Abramov, N. N.; Stolyarov, V. S.; Dzhumaev, P. S.; Emelyanova, O. V.; Golubov, A. A.; Ryazanov, V. V.; Ustinov, A. V.
2019. Advanced science, 6 (16), Article No.1900435. doi:10.1002/advs.201900435
Unconventional magnetic field effect on noise properties of AlOₓ thin films in Kondo-like transport regime.
Barone, C.; Rotzinger, H.; Mauro, C.; Dorer, D.; Ustinov, A. V.; Pagano, S.
2019. European physical journal special topics, 228 (3), 697–702. doi:10.1140/epjst/e2019-800146-1
Resonance inversion in a superconducting cavity coupled to artificial atoms and a microwave background.
Leppäkangas, J.; Brehm, J. D.; Yang, P.; Guo, L.; Marthaler, M.; Ustinov, A. V.; Weides, M.
2019. Physical review / A, 99 (6), Art.-Nr.: 063804. doi:10.1103/PhysRevA.99.063804
Phase-sensitive imaging of microwave currents in superconductive circuits.
Karpov, A.; Zhuravel, A. P.; Averkin, A. S.; Chichkov, V. I.; Ustinov, A. V.
2019. Applied physics letters, 114 (23), Art. Nr.: 232601. doi:10.1063/1.5109726
Mode Structure in Superconducting Metamaterial Transmission-Line Resonators.
Wang, H.; Zhuravel, A. P.; Indrajeet, S.; Taketani, B. G.; Hutchings, M. D.; Hao, Y.; Rouxinol, F.; Wilhelm, F. K.; Lahaye, M. D.; Ustinov, A. V.; Plourde, B. L. T.
2019. Physical review applied, 11 (5), 054062. doi:10.1103/PhysRevApplied.11.054062
Interplay between Kinetic Inductance, Nonlinearity, and Quasiparticle Dynamics in Granular Aluminum Microwave Kinetic Inductance Detectors.
Valenti, F.; Henriques, F.; Catelani, G.; Maleeva, N.; Grünhaupt, L.; Von Lüpke, U.; Skacel, S. T.; Winkel, P.; Bilmes, A.; Ustinov, A. V.; Goupy, J.; Calvo, M.; Benoît, A.; Levy-Bertrand, F.; Monfardini, A.; Pop, I. M.
2019. Physical review applied, 11 (5), 054087. doi:10.1103/PhysRevApplied.11.054087
Analysis of microwave-readable RFTES bolometer.
Merenkov, A. V.; Chichkov, V. I.; Ustinov, A. V.; Shitov, S. V.
2019. Journal of physics / Conference Series, 1182 (1), Art. Nr.: 012009. doi:10.1088/1742-6596/1182/1/012009
Interplay of Magnetization Dynamics with a Microwave Waveguide at Cryogenic Temperatures.
Golovchanskiy, I. A.; Abramov, N. N.; Pfirrmann, M.; Piskor, T.; Voss, J. N.; Baranov, D. S.; Hovhannisyan, R. A.; Stolyarov, V. S.; Dubs, C.; Golubov, A. A.; Ryazanov, V. V.; Ustinov, A. V.; Weides, M.
2019. Physical review applied, 11 (4), Art. Nr.: 044076. doi:10.1103/PhysRevApplied.11.044076
Imaging collective behavior in an rf-SQUID metamaterial tuned by DC and RF magnetic fields.
Zhuravel, A. P.; Bae, S.; Lukashenko, A. V.; Averkin, A. S.; Ustinov, A. V.; Anlage, S. M.
2019. Applied physics letters, 114 (8), Art. Nr.: 082601. doi:10.1063/1.5064658